1 Star 0 Fork 0

善若水/uie_pytorch

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
evaluate.py 6.60 KB
一键复制 编辑 原始数据 按行查看 历史
# Copyright (c) 2022 Heiheiyoyo. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from model import UIE
import argparse
from functools import partial
import torch
from transformers import BertTokenizerFast
from torch.utils.data import DataLoader
from utils import IEMapDataset, SpanEvaluator, IEDataset, convert_example, get_relation_type_dict, logger, tqdm, unify_prompt_name
@torch.no_grad()
def evaluate(model, metric, data_loader, device='gpu', loss_fn=None, show_bar=True):
"""
Given a dataset, it evals model and computes the metric.
Args:
model(obj:`torch.nn.Module`): A model to classify texts.
metric(obj:`Metric`): The evaluation metric.
data_loader(obj:`torch.utils.data.DataLoader`): The dataset loader which generates batches.
"""
return_loss = False
if loss_fn is not None:
return_loss = True
model.eval()
metric.reset()
loss_list = []
loss_sum = 0
loss_num = 0
if show_bar:
data_loader = tqdm(
data_loader, desc="Evaluating", unit='batch')
for batch in data_loader:
input_ids, token_type_ids, att_mask, start_ids, end_ids = batch
if device == 'gpu':
input_ids = input_ids.cuda()
token_type_ids = token_type_ids.cuda()
att_mask = att_mask.cuda()
outputs = model(input_ids=input_ids,
token_type_ids=token_type_ids,
attention_mask=att_mask)
start_prob, end_prob = outputs[0], outputs[1]
if device == 'gpu':
start_prob, end_prob = start_prob.cpu(), end_prob.cpu()
start_ids = start_ids.type(torch.float32)
end_ids = end_ids.type(torch.float32)
if return_loss:
# Calculate loss
loss_start = loss_fn(start_prob, start_ids)
loss_end = loss_fn(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
loss = float(loss)
loss_list.append(loss)
loss_sum += loss
loss_num += 1
if show_bar:
data_loader.set_postfix(
{
'dev loss': f'{loss_sum / loss_num:.5f}'
}
)
# Calcalate metric
num_correct, num_infer, num_label = metric.compute(start_prob, end_prob,
start_ids, end_ids)
metric.update(num_correct, num_infer, num_label)
precision, recall, f1 = metric.accumulate()
model.train()
if return_loss:
loss_avg = sum(loss_list) / len(loss_list)
return loss_avg, precision, recall, f1
else:
return precision, recall, f1
def do_eval():
tokenizer = BertTokenizerFast.from_pretrained(args.model_path)
model = UIE.from_pretrained(args.model_path)
if args.device == 'gpu':
model = model.cuda()
test_ds = IEDataset(args.test_path, tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
class_dict = {}
relation_data = []
if args.debug:
for data in test_ds.dataset:
class_name = unify_prompt_name(data['prompt'])
# Only positive examples are evaluated in debug mode
if len(data['result_list']) != 0:
if "的" not in data['prompt']:
class_dict.setdefault(class_name, []).append(data)
else:
relation_data.append((data['prompt'], data))
relation_type_dict = get_relation_type_dict(relation_data)
else:
class_dict["all_classes"] = test_ds
for key in class_dict.keys():
if args.debug:
test_ds = IEMapDataset(class_dict[key], tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
else:
test_ds = class_dict[key]
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(
model, metric, test_data_loader, args.device)
logger.info("-----------------------------")
logger.info("Class Name: %s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" %
(precision, recall, f1))
if args.debug and len(relation_type_dict.keys()) != 0:
for key in relation_type_dict.keys():
test_ds = IEMapDataset(relation_type_dict[key], tokenizer=tokenizer,
max_seq_len=args.max_seq_len)
test_data_loader = DataLoader(
test_ds, batch_size=args.batch_size, shuffle=False)
metric = SpanEvaluator()
precision, recall, f1 = evaluate(
model, metric, test_data_loader, args.device)
logger.info("-----------------------------")
logger.info("Class Name: X的%s" % key)
logger.info("Evaluation Precision: %.5f | Recall: %.5f | F1: %.5f" %
(precision, recall, f1))
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("-m", "--model_path", type=str, required=True,
help="The path of saved model that you want to load.")
parser.add_argument("-t", "--test_path", type=str, required=True,
help="The path of test set.")
parser.add_argument("-b", "--batch_size", type=int, default=16,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--max_seq_len", type=int, default=512,
help="The maximum total input sequence length after tokenization.")
parser.add_argument("-D", '--device', choices=['cpu', 'gpu'], default="gpu",
help="Select which device to run model, defaults to gpu.")
parser.add_argument("--debug", action='store_true',
help="Precision, recall and F1 score are calculated for each class separately if this option is enabled.")
args = parser.parse_args()
# yapf: enable
do_eval()
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/good-as-water/uie_pytorch.git
git@gitee.com:good-as-water/uie_pytorch.git
good-as-water
uie_pytorch
uie_pytorch
main

搜索帮助