代码拉取完成,页面将自动刷新
同步操作将从 Ascend/MindSpeed-LLM 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# coding=utf-8
# Copyright (c) 2024, HUAWEI CORPORATION. All rights reserved.
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Sample Generate LLAMA"""
import os
import sys
import time
import logging
from typing import Union
from torch import distributed as dist
from transformers import AutoTokenizer
from mindspeed_llm import megatron_adaptor
from megatron.core.models.gpt.gpt_layer_specs import get_gpt_layer_with_transformer_engine_spec, \
get_gpt_layer_local_spec
from megatron.core.transformer.spec_utils import import_module
from megatron.training.initialize import initialize_megatron
from megatron.training import get_args, print_rank_0
from megatron.legacy.model import GPTModel
from megatron.training.arguments import core_transformer_config_from_args
from megatron.training.yaml_arguments import core_transformer_config_from_yaml
from mindspeed_llm.tasks.inference.module import GPTModelInfer, MegatronModuleForCausalLM
from mindspeed_llm.tasks.evaluation.utils import add_text_generate_args
from mindspeed_llm.tasks.evaluation.eval_api.chat import Chat
from mindspeed_llm.tasks.evaluation.eval_impl.boolq_eval import BoolqEval
from mindspeed_llm.tasks.evaluation.eval_impl.gsm8k_eval import Gsm8kEval
from mindspeed_llm.tasks.evaluation.eval_impl.mmlu_eval import MmluEval
from mindspeed_llm.tasks.evaluation.eval_impl.ceval_exam import CEvalExam
from mindspeed_llm.tasks.evaluation.eval_impl.bbh_eval import BBHEval
from mindspeed_llm.tasks.evaluation.eval_impl.agi_eval import AGIEvalExam
from mindspeed_llm.tasks.evaluation.eval_impl.human_eval import HumanEval
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)))
logging.getLogger().setLevel(logging.INFO)
logger = logging.getLogger(__name__)
def model_provider(pre_process=True, post_process=True) -> Union[GPTModelInfer, GPTModel]:
"""Builds the model.
If you set the use_mcore_models to True, it will return the mcore GPT model and if not the legacy GPT model.
Args:
pre_process (bool, optional): Set to true if you need to compute embedings. Defaults to True.
post_process (bool, optional): Set to true if you need to want to compute output logits/loss. Defaults to True.
Returns:
Union[GPTModelInfer, GPTModel]: The returned model
"""
args = get_args()
use_te = args.transformer_impl == "transformer_engine"
print_rank_0('building GPT model ...')
# Experimental loading arguments from yaml
if args.yaml_cfg is not None:
config = core_transformer_config_from_yaml(args, "language_model")
else:
config = core_transformer_config_from_args(args)
if args.use_mcore_models:
if args.spec is not None:
transformer_layer_spec = import_module(args.spec)
else:
if use_te:
transformer_layer_spec = get_gpt_layer_with_transformer_engine_spec(args.num_experts, args.moe_grouped_gemm)
else:
transformer_layer_spec = get_gpt_layer_local_spec(args.num_experts, args.moe_grouped_gemm)
model = GPTModelInfer(
config=config,
transformer_layer_spec=transformer_layer_spec,
vocab_size=args.padded_vocab_size,
max_sequence_length=args.max_position_embeddings,
pre_process=pre_process,
post_process=post_process,
fp16_lm_cross_entropy=args.fp16_lm_cross_entropy,
parallel_output=False,
share_embeddings_and_output_weights=not args.untie_embeddings_and_output_weights,
position_embedding_type=args.position_embedding_type,
rotary_percent=args.rotary_percent,
seq_len_interpolation_factor=args.rotary_seq_len_interpolation_factor
)
else:
if not args.context_parallel_size == 1:
raise ValueError("Context parallelism is only supported with Megatron Core!")
model = GPTModel(
config,
parallel_output=False,
pre_process=pre_process,
post_process=post_process
)
return model
def get_result(result, tokenizer):
if result:
final_results = []
if isinstance(result[0], list):
for idx, res in enumerate(result[0]):
final_result = [res]
if result[1][idx][0][tokenizer.encode("Yes")[-1]] >= result[1][idx][0][tokenizer.encode("No")[-1]]:
final_result.append('T')
else:
final_result.append('F')
final_results.append(final_result)
else:
final_result = [result[0]]
if result[1][0][tokenizer.encode("Yes")[-1]] >= result[1][0][tokenizer.encode("No")[-1]]:
final_result.append('T')
else:
final_result.append('F')
final_results.append(final_result)
else:
final_results = None
return final_results
class LLMChat(Chat):
def __init__(self, llm_args, model, tokenizer):
self.args = llm_args
self.model = model
self.tokenizer = tokenizer
self.template = "{instruction}"
def chat(self, instruction, history):
instruction_temp = None
if self.args.prompt_type is None:
instruction_temp = [self.template.format(instruction=ins) if (self.tokenizer.chat_template is None or self.args.no_chat_template) else self.tokenizer.apply_chat_template([{"role": "user", "content": ins}]) for ins in instruction]
else:
instruction_temp = instruction
result = self.model.generate(
instruction_temp,
do_sample=False,
max_new_tokens=self.args.max_new_tokens,
stream=False,
return_output_log_probs=True
)
return get_result(result, self.tokenizer), dist.get_rank()
def beam_search_chat(self, instruction, history):
instruction_temp = None
if self.args.prompt_type is None:
instruction_temp = self.template.format(instruction=instruction) if (self.tokenizer.chat_template is None or self.args.no_chat_template) else self.tokenizer.apply_chat_template([{"role": "user", "content": instruction}])
else:
instruction_temp = instruction
result = self.model.generate(
instruction_temp,
do_sample=False,
max_new_tokens=self.args.max_new_tokens,
stream=False,
num_beams=4,
top_k=50,
top_p=0.95,
length_penalty=0.7
)
return [result], dist.get_rank()
def mmlu(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'mmlu' in path:
data_path = path
try:
if data_path:
mmlu_eval = MmluEval(test_dir=data_path, eval_args=eval_args)
answer, score_df = mmlu_eval.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def gsm8k(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'gsm8k' in path:
data_path = path
try:
if data_path:
gsm8k_eval = Gsm8kEval(test_dir=data_path, eval_args=eval_args)
answer, score_df = gsm8k_eval.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def boolq(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'boolq' in path:
data_path = path
try:
if data_path:
boolq_eval = BoolqEval(test_dir=data_path, eval_args=eval_args)
answer, score_df = boolq_eval.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def ceval(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'ceval' in path:
data_path = path
try:
if data_path:
ceval_exam = CEvalExam(test_dir=data_path, eval_args=eval_args)
answer, score_df = ceval_exam.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def human_eval(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'human_eval' in path:
data_path = path
try:
if data_path:
human_eval_exam = HumanEval(test_dir=data_path, eval_args=eval_args)
answer, score_df = human_eval_exam.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def agi_eval(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'agieval' in path:
data_path = path
try:
if data_path:
agieval_exam = AGIEvalExam(test_dir=data_path, eval_args=eval_args)
answer, score_df = agieval_exam.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def bbh_eval(eval_args, agent):
data_path = None
answer = None
score_df = None
for path in eval_args.task_data_path:
if 'bbh' in path:
data_path = path
try:
if data_path:
bbh = BBHEval(test_dir=data_path, eval_args=eval_args)
answer, score_df = bbh.eval(chat=agent)
if dist.get_rank() == 0:
logger.info('\n{}'.format(score_df))
except Exception as e:
logger.info(e)
return answer, score_df
def main():
initialize_megatron(extra_args_provider=add_text_generate_args,
args_defaults={'no_load_rng': True,
'no_load_optim': True})
args = get_args()
model = MegatronModuleForCausalLM.from_pretrained(
model_provider=model_provider,
pretrained_model_name_or_path=args.load
)
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path, trust_remote_code=True, local_files_only=True)
rank = dist.get_rank()
if 'mmlu' in args.task:
a = time.time()
mmlu(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'MMLU Running Time:, {time.time() - a}')
if 'gsm8k' in args.task:
a = time.time()
gsm8k(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'GSM8k Running Time: {time.time() - a}')
if 'boolq' in args.task:
a = time.time()
boolq(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'Boolq Running Time: {time.time() - a}')
if 'ceval' in args.task:
a = time.time()
ceval(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'Ceval Running Time: {time.time() - a}')
if 'bbh' in args.task:
a = time.time()
bbh_eval(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'bbh Running Time: {time.time() - a}')
if 'agieval' in args.task:
a = time.time()
agi_eval(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'agi_eval Running Time: {time.time() - a}')
if 'human_eval' in args.task:
a = time.time()
human_eval(args, LLMChat(args, model, tokenizer))
if rank == 0:
logger.info(f'Human_eval Running Time: {time.time() - a}')
if __name__ == "__main__":
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。