代码拉取完成,页面将自动刷新
"""
GPU训练 2:设置 device,分别在 模型、损失函数、图像组、标签组 后加 .to(device)
# device = torch.device("cuda")
# gis = gis.to(device)
# loss_fn = loss_fn.to(device)
# imgs = imgs.to(device)
# targets = targets.to(device)
"""
import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, ReLU, Sigmoid, Linear, Flatten, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model.model20 import *
# 定义训练de设备(经过测试gpu:3060比cpu:i711s快了3.4倍左右)
# device = torch.device("cpu") # 时间=277.95171666145325
device = torch.device("cuda") # 时间=82.56803464889526(Windows11) 时间=52.36684012413025(Ubuntu20.04)
# 准备数据
train_data = torchvision.datasets.CIFAR10(root="./visionData", train=True, transform=torchvision.transforms.ToTensor(),
download=True)
test_data = torchvision.datasets.CIFAR10(root="./visionData", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
# length 长度
train_data_size = len(test_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用DataLoader 加载数据
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 搭建神经网络
class Gisleung(nn.Module):
def __init__(self):
super(Gisleung, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 4 * 4, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
# 实例化模型
gis = Gisleung()
# if torch.cuda.is_available():
# gis = gis.cuda()
gis = gis.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# if torch.cuda.is_available():
# loss_fn = loss_fn.cuda()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 0.01 # 学习率
optimizer = torch.optim.SGD(gis.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
total_train_step = 0 # 记录训练的次数
total_test_step = 0 # 记录测试的次数
epoch = 10 # 训练的轮数
# 添加tensorboard
writer = SummaryWriter("logs/020")
start_time = time.time()
for i in range(epoch):
print("------第 {} 轮训练开始------".format(i + 1))
# 训练步骤开始
gis.train()
for data in train_dataloader:
imgs, targets = data
# imgs = imgs.cuda()
# targets = targets.cuda()
imgs = imgs.to(device)
targets = targets.to(device)
outputs = gis(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step = total_train_step + 1
# 100次打印一次
if total_train_step % 100 == 0:
print("训练次数: {},Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
gis.eval()
total_test_loss = 0
total_accuracy = 0 # 整体正确的个数
with torch.no_grad():
for data in test_dataloader:
imgs, targets = data
# imgs = imgs.cuda()
# targets = targets.cuda()
imgs = imgs.to(device)
targets = targets.to(device)
outputs = gis(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
# 计算正确率
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy / test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy / test_data_size, total_test_step)
total_test_step = total_test_step + 1
# 保存每一次的模型
torch.save(gis, "./model_save/gis_{}.pth".format(i))
print("模型: gis_{}.pth 已保存".format(i))
end_time = time.time()
print("总共耗时:{}".format(end_time - start_time))
writer.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。