代码拉取完成,页面将自动刷新
"""
在神经网络中加入 损失值。
"""
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, ReLU, Sigmoid, Linear, Flatten, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs/016")
dataset = torchvision.datasets.CIFAR10(root="./visionData", train=False, transform=torchvision.transforms.ToTensor(),
download=True)
dataloader = DataLoader(dataset, batch_size=1)
# Sequential。使代码更加简洁
class MyNnSe(nn.Module):
def __init__(self):
super(MyNnSe, self).__init__()
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
loss = nn.CrossEntropyLoss()
mySeNn = MyNnSe()
for data in dataloader:
imgs, tagets = data
outputs = mySeNn(imgs)
result_loss = loss(outputs, tagets)
# 计算梯度,用于优化器(optim)反向调节。(调节网络结构中的卷积权重)
result_loss.backward()
print(result_loss)
writer.close()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。