1 Star 4 Fork 0

garlong/GiantMIDI-Piano

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
dataset.py 22.26 KB
一键复制 编辑 原始数据 按行查看 历史
DELL 提交于 2021-04-13 14:54 . update
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652
import os
import sys
import numpy as np
import argparse
import re
import string
import time
import csv
import glob
from bs4 import BeautifulSoup
import nltk
from nltk.tokenize import RegexpTokenizer
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
from config import nationalities
def space_to_underscore(s):
return s.replace(' ', '_')
def underscore_to_space(s):
return s.replace('_', ' ')
def download_imslp_htmls(args):
"""Download html pages of all composers on IMSLP. In total 18,399 html
pages have been downloaded.
"""
# Arguments & parameters
workspace = args.workspace
# Paths
htmls_dir = os.path.join(workspace, 'htmls')
os.makedirs(htmls_dir, exist_ok=True)
# Download composer page
html_path = os.path.join(workspace, 'Category:Composers.html')
os.system('wget --quiet -O {} https://imslp.org/wiki/Category:Composers'.format(html_path))
# Load html text
with open(html_path, 'r') as fr:
text = fr.read()
# Get all composer names. Will looks like:
# ['A., Jag', 'Aadler, C. A.', 'Aagesen, Truid', ...]
names = []
for ch in string.ascii_uppercase[0 : 26]:
"""Search from A to Z. Get all composers by their surnames."""
substring = text[re.search(f'"{ch}":\[', text).end() :]
substring = substring[: re.search('\]', substring).start()]
substring = substring.encode('utf8').decode('unicode_escape')
names += substring[1 : -1].split('","')
bgn_time = time.time()
# Download html pages of all composers
for n, name in enumerate(names):
surname_firstname = name.split(', ')
"""E.g., ['A.', 'Jag']"""
if len(surname_firstname) == 1:
surname = surname_firstname[0]
composer_link = 'https://imslp.org/wiki/Category:{}'.format(space_to_underscore(surname))
html_path = os.path.join(htmls_dir, '{}.html'.format(surname))
elif len(surname_firstname) == 2:
[surname, firstname] = surname_firstname
composer_link = 'https://imslp.org/wiki/Category:{}%2C_{}'.format(
space_to_underscore(surname), space_to_underscore(firstname))
html_path = os.path.join(htmls_dir, '{}, {}.html'.format(surname, firstname))
os.system('wget --quiet -O "{}" "{}"'.format(html_path, composer_link))
print(n, html_path, os.path.isfile(html_path))
print('Finish! {:.3f} s'.format(time.time() - bgn_time))
def download_wikipedia_htmls(args):
"""Download wikipedia pages of composers if exist. In total 6,831 wikipedia
pages are downloaded."""
# Arguments & parameters
workspace = args.workspace
# Paths
htmls_dir = os.path.join(workspace, 'htmls')
html_names = sorted(os.listdir(htmls_dir))
wikipedias_dir = os.path.join(workspace, 'wikipedias')
os.makedirs(wikipedias_dir, exist_ok=True)
# Download wikipedia of composers
for n, html_name in enumerate(html_names):
print(n, html_name) # E.g., 'A., Jag.html'
html_path = os.path.join(htmls_dir, html_name)
surname_firstname = html_name[0 : -5].split(', ')
if len(surname_firstname) == 2:
[surname, firstname] = surname_firstname
with open(html_path, 'r') as fr:
text = fr.read()
tmp = re.search('Detailed biography: <a href="', text)
if tmp: # Only part of composer has wikipedia page
text = text[tmp.end() : tmp.end() + 500]
wikipedia_link = text[: re.search('"', text).start()]
print(wikipedia_link)
out_path = os.path.join(wikipedias_dir, '{}, {}.html'.format(surname, firstname))
os.system('wget --quiet -O "{}" "{}"'.format(out_path, wikipedia_link))
def create_meta_csv(args):
"""Create GiantMIDI-Piano meta csv. This csv collects 144,079 music pieces
from all composers."""
# Arguments & parameters
workspace = args.workspace
# Paths
htmls_dir = os.path.join(workspace, 'htmls')
wikipedias_dir = os.path.join(workspace, 'wikipedias')
out_csv_path = os.path.join(workspace, 'full_music_pieces.csv')
html_names = sorted(os.listdir(htmls_dir))
meta_dict = {'surname': [], 'firstname': [], 'music': [], 'nationality': [],
'birth': [], 'death': []}
for n, html_name in enumerate(html_names):
print(n, html_name) # E.g., 'A., Jag.html'
surname_firstname = html_name[0 : -5].split(', ')
if len(surname_firstname) == 2:
[surname, firstname] = surname_firstname
# Parse nationality, birth and death from Wikipedia
wikipedia_path = os.path.join(wikipedias_dir, '{}, {}.html'.format(surname, firstname))
(nationality, birth, death) = get_composer_info_from_wikipedia(wikipedia_path)
# Parse music pieces from IMSLP html
html_path = os.path.join(htmls_dir, html_name)
music_names = get_music_names_from_imslp(html_path)
music_names = [remove_suffix(music_name, firstname, surname) for music_name in music_names]
for music_name in music_names:
meta_dict['surname'].append(surname)
meta_dict['firstname'].append(firstname)
meta_dict['music'].append(music_name)
meta_dict['nationality'].append(nationality)
meta_dict['birth'].append(birth)
meta_dict['death'].append(death)
write_meta_dict_to_csv(meta_dict, out_csv_path)
print('Write out to {}'.format(out_csv_path))
def get_composer_info_from_wikipedia(wikipedia_path):
"""Get nationality, birth and death from wikipedia."""
nationality = None
years = []
if os.path.isfile(wikipedia_path):
with open(wikipedia_path, 'r') as fr:
text = fr.read()
text = text.replace(': ', ':')
text = text.replace('", "', '","')
bgn = re.search('wgCategories":\[', text)
if not bgn:
return 'unknown', 'unknown', 'unknown'
bgn = bgn.end()
text = text[bgn + 1 :]
fin = re.search('\]', text).start()
text = text[0 : fin - 1]
text = text.split('","')
sentence = ' '.join(text)
words = nltk.word_tokenize(sentence)
pairs = nltk.pos_tag(words)
for pair in pairs:
if pair[1] == 'JJ': # Nationality
if not nationality and pair[0] in nationalities:
nationality = pair[0]
elif pair[1] == 'CD': # Birth or death year
try:
year = int(pair[0][0:4])
if year >= 1000 and year <= 9999:
years.append(year)
except:
pass
years = sorted(years)
if len(years) >= 2:
birth = str(years[0])
death = str(years[1])
else:
birth = 'unknown'
death = 'unknown'
if not nationality:
nationality = 'unknown'
return nationality, birth, death
def get_music_names_from_imslp(ismlp_path):
"""Get all music names of a composer by parsing his / her IMSLP html page."""
with open(ismlp_path, 'r') as fr:
text = fr.read()
# All music pieces information are before catpagejs
obj = re.search("</div><script>if\(typeof catpagejs=='undefined'\)", text)
if obj:
text = text[: obj.start()]
soup = BeautifulSoup(text, 'html.parser')
links = soup.find_all('a')
music_names = []
for link in links:
link = str(link)
if 'categorypagelink' in link:
"""link looks like: '<a class="categorypagelink" href="/wiki/Je_t%27aime_Juliette_(A.,_Jag)" title="Je t\'aime Juliette (A., Jag)">Je t\'aime Juliette (A., Jag)</a>'
"""
bgn = re.search('title=', link).end()
link = link[bgn + 1 :]
fin = re.search('>', link).start()
music_name = link[0 : fin - 1] # "Je t'aime Juliette (A., Jag)"
music_names.append(music_name)
for link in links:
link = str(link)
if 'next 200' in link:
"""link looks like: '<a class="categorypaginglink" href="/index.php?title=Category:Mozart,_Wolfgang_Amadeus&amp;pagefrom=Fantasia+in+f+minor%2C+k.0608%7E%7Emozart%2C+wolfgang+amadeus%0AFantasia+in+F+minor%2C+K.608+%28Mozart%2C+Wolfgang+Amadeus%29#mw-pages" title="Category:Mozart, Wolfgang Amadeus">next 200</a>'
"""
bgn = re.search('href="', link).end()
link = link[bgn :]
fin = re.search('"', link).start()
link = link[: fin]
link = 'https://imslp.org{}'.format(link)
link = link.replace('&amp;', '&')
print(link)
os.system('wget --quiet -O _tmp.html "{}"'.format(link))
music_names += get_music_names_from_imslp('_tmp.html')
break
return music_names
def remove_suffix(music_name, firstname, surname):
loct = re.search(f' \({surname}, {firstname}\)', music_name)
if loct:
music_name = music_name[0 : loct.start()]
return music_name
def write_meta_dict_to_csv(meta_dict, out_csv_path):
"""Write meta dict to csv path."""
with open(out_csv_path, 'w') as fw:
line = '\t'.join([key for key in meta_dict.keys()])
fw.write('{}\n'.format(line))
for n in range(len(meta_dict['firstname'])):
line = '\t'.join([str(meta_dict[key][n]) for key in meta_dict.keys()])
fw.write('{}\n'.format(line))
def read_csv_to_meta_dict(csv_path):
"""Read csv file to meta_dict."""
lines = []
with open(csv_path, 'r') as fr:
for line in fr.readlines():
line = line.split('\n')[0].split('\t')
lines.append(line)
meta_dict = {key: [] for key in lines[0]}
lines = lines[1 :]
for m, line in enumerate(lines):
for k, key in enumerate(meta_dict.keys()):
meta_dict[key].append(line[k])
return meta_dict
def _read_title_id(path):
with open(path, 'r') as fr:
lines = fr.readlines()
if len(lines) == 2:
title = lines[0].split('\n')[0]
id = lines[1].split('\n')[0]
return title, id
else:
return 'none', 'none'
def _too_many_requests(path):
with open(path, 'r') as fr:
lines = fr.readlines()
for line in lines:
print(line)
if 'HTTP Error 429: Too Many Requests' in line:
return True
return False
def search_youtube(args):
"""Search music names on YouTube, and append searched YouTube titles and
IDs to meta csv."""
# Arguments & parameters
workspace = args.workspace
mini_data = args.mini_data
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
csv_path = os.path.join(workspace, 'full_music_pieces.csv')
stdout_path = os.path.join(workspace, '_tmp', 'stdout.txt')
error_path = os.path.join(workspace, '_tmp', 'error.txt')
os.makedirs(os.path.dirname(stdout_path), exist_ok=True)
youtube_csv_path = os.path.join(workspace, '{}full_music_pieces_youtube.csv'.format(prefix))
meta_dict = read_csv_to_meta_dict(csv_path)
youtube_meta_dict = {key: [] for key in meta_dict.keys()}
youtube_meta_dict['youtube_title'] = []
youtube_meta_dict['youtube_id'] = []
n = 0
while n < len(meta_dict['surname']):
print(n, meta_dict['surname'][n])
search_str = '{} {}, {}'.format(meta_dict['firstname'][n],
meta_dict['surname'][n], meta_dict['music'][n])
youtube_simulate_str = 'youtube-dl --get-id --get-title ytsearch$1:"{}" 1>"{}" 2>"{}"'.\
format(search_str, stdout_path, error_path)
os.system(youtube_simulate_str)
if _too_many_requests(error_path):
sleep_seconds = 3600
print('Too many requests! Sleep for {} s ...'.format(sleep_seconds))
time.sleep(sleep_seconds)
continue
(title, id) = _read_title_id(stdout_path)
youtube_meta_dict['youtube_title'].append(title)
youtube_meta_dict['youtube_id'].append(id)
for key in meta_dict.keys():
youtube_meta_dict[key].append(meta_dict[key][n])
print(', '.join([youtube_meta_dict[key][n] for key in youtube_meta_dict.keys()]))
n += 1
if mini_data and n == 10:
break
write_meta_dict_to_csv(youtube_meta_dict, youtube_csv_path)
print('Write out to {}'.format(youtube_csv_path))
def intersection(lst1, lst2):
lst3 = [value for value in lst1 if value in lst2]
return lst3
def jaccard_similarity(x, y):
intersect = intersection(x, y)
similarity = len(intersect) / max(float(len(x)), 1e-8)
return similarity
def calculate_similarity(args):
"""Calculate and append the similarity between YouTube titles and IMSLP
music names to meta csv."""
# Arguments & parameters
workspace = args.workspace
mini_data = args.mini_data
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
youtube_csv_path = os.path.join(workspace,
'{}full_music_pieces_youtube.csv'.format(prefix))
similarity_csv_path = os.path.join(workspace,
'{}full_music_pieces_youtube_similarity.csv'.format(prefix))
# Meta info to be downloaded
meta_dict = read_csv_to_meta_dict(youtube_csv_path)
meta_dict['similarity'] = []
tokenizer = RegexpTokenizer('[A-Za-z0-9ÇéâêîôûàèùäëïöüÄß]+')
count = 0
download_time = time.time()
for n in range(len(meta_dict['surname'])):
target_str = '{} {}, {}'.format(meta_dict['firstname'][n],
meta_dict['surname'][n], meta_dict['music'][n])
target_str_without_firstname = '{}, {}'.format(
meta_dict['surname'][n], meta_dict['music'][n])
searched_str = meta_dict['youtube_title'][n]
target_words = tokenizer.tokenize(target_str_without_firstname.lower())
searched_words = tokenizer.tokenize(searched_str.lower())
similarity = jaccard_similarity(target_words, searched_words)
meta_dict['similarity'].append(str(similarity))
write_meta_dict_to_csv(meta_dict, similarity_csv_path)
print('Write out to {}'.format(similarity_csv_path))
def download_youtube(args):
"""Download IMSLP music pieces from YouTube. 59,969 files are downloaded
in Jan. 2020.
"""
# Arguments & parameters
workspace = args.workspace
begin_index = args.begin_index
end_index = args.end_index
mini_data = args.mini_data
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
similarity_csv_path = os.path.join(workspace,
'{}full_music_pieces_youtube_similarity.csv'.format(prefix))
mp3s_dir = os.path.join(workspace, 'mp3s')
os.makedirs(mp3s_dir, exist_ok=True)
stdout_path = os.path.join(workspace, '_tmp', 'stdout.txt')
error_path = os.path.join(workspace, '_tmp', 'error.txt')
os.makedirs(os.path.dirname(stdout_path), exist_ok=True)
# Meta info to be downloaded
meta_dict = read_csv_to_meta_dict(similarity_csv_path)
count = 0
download_time = time.time()
n = begin_index
while n < min(end_index, len(meta_dict['surname'])):
print('{}; {} {}; {}; {}'.format(n, meta_dict['firstname'][n],
meta_dict['surname'][n], meta_dict['music'][n], meta_dict['youtube_title'][n]))
if float(meta_dict['similarity'][n]) > 0.6:
count += 1
bare_name = os.path.join('{}, {}, {}, {}'.format(
meta_dict['surname'][n], meta_dict['firstname'][n],
meta_dict['music'][n], meta_dict['youtube_id'][n]).replace('/', '_'))
youtube_str = 'youtube-dl -f bestaudio -o "{}/{}.%(ext)s" https://www.youtube.com/watch?v={} 1>"{}" 2>"{}"' \
.format(mp3s_dir, bare_name, meta_dict['youtube_id'][n], stdout_path, error_path)
os.system(youtube_str)
if _too_many_requests(error_path):
sleep_seconds = 3600
print('Too many requests! Sleep for {} s ...'.format(sleep_seconds))
time.sleep(sleep_seconds)
continue
# Convert to MP3
audio_paths = glob.glob(os.path.join(mp3s_dir, '{}*'.format(bare_name)))
print(audio_paths)
if len(audio_paths) > 0:
audio_path = audio_paths[0]
mp3_path = os.path.join(mp3s_dir, '{}.mp3'.format(bare_name))
os.system('ffmpeg -i "{}" -loglevel panic -y -ac 1 -ar 32000 "{}" '\
.format(audio_path, mp3_path))
if os.path.splitext(audio_path)[-1] != '.mp3':
os.system('rm "{}"'.format(audio_path))
n += 1
print('{} out of {} audios are downloaded!'.format(count, end_index - begin_index))
print('Time: {:.3f}'.format(time.time() - download_time))
def download_youtube_piano_solo(args):
"""Download piano solo of GiantMIDI-Piano. 10,848 files can be downloaded in
Jan. 2020.
"""
# Arguments & parameters
workspace = args.workspace
begin_index = args.begin_index
end_index = args.end_index
mini_data = args.mini_data
if mini_data:
prefix = 'minidata_'
else:
prefix = ''
# Paths
similarity_csv_path = os.path.join(workspace,
'{}full_music_pieces_youtube_similarity_pianosoloprob.csv'.format(prefix))
mp3s_dir = os.path.join(workspace, 'mp3s_piano_solo')
os.makedirs(mp3s_dir, exist_ok=True)
stdout_path = os.path.join(workspace, '_tmp', 'stdout.txt')
error_path = os.path.join(workspace, '_tmp', 'error.txt')
os.makedirs(os.path.dirname(stdout_path), exist_ok=True)
# Meta info to be downloaded
meta_dict = read_csv_to_meta_dict(similarity_csv_path)
count = 0
download_time = time.time()
n = begin_index
while n < min(end_index, len(meta_dict['surname'])):
print('{}; {} {}; {}; {}'.format(n, meta_dict['firstname'][n],
meta_dict['surname'][n], meta_dict['music'][n], meta_dict['youtube_title'][n]))
if float(meta_dict['piano_solo_prob'][n]) >= 0.5:
count += 1
bare_name = os.path.join('{}, {}, {}, {}'.format(
meta_dict['surname'][n], meta_dict['firstname'][n],
meta_dict['music'][n], meta_dict['youtube_id'][n]).replace('/', '_'))
youtube_str = 'youtube-dl -f bestaudio -o "{}/{}.%(ext)s" https://www.youtube.com/watch?v={} 1>"{}" 2>"{}"' \
.format(mp3s_dir, bare_name, meta_dict['youtube_id'][n], stdout_path, error_path)
os.system(youtube_str)
if _too_many_requests(error_path):
sleep_seconds = 3600
print('Too many requests! Sleep for {} s ...'.format(sleep_seconds))
time.sleep(sleep_seconds)
continue
# Convert to MP3
audio_paths = glob.glob(os.path.join(mp3s_dir, '{}*'.format(bare_name)))
print(audio_paths)
if len(audio_paths) > 0:
audio_path = audio_paths[0]
mp3_path = os.path.join(mp3s_dir, '{}.mp3'.format(bare_name))
os.system('ffmpeg -i "{}" -loglevel panic -y -ac 1 -ar 32000 "{}" '\
.format(audio_path, mp3_path))
if os.path.splitext(audio_path)[-1] != '.mp3':
os.system('rm "{}"'.format(audio_path))
n += 1
print('{} out of {} audios are downloaded!'.format(count, end_index - begin_index))
print('Time: {:.3f}'.format(time.time() - download_time))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Example of parser. ')
subparsers = parser.add_subparsers(dest='mode')
# Plot statistics
parser_imslp_htmls = subparsers.add_parser('download_imslp_htmls')
parser_imslp_htmls.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_wikipedia = subparsers.add_parser('download_wikipedia_htmls')
parser_wikipedia.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_create_meta_csv = subparsers.add_parser('create_meta_csv')
parser_create_meta_csv.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_search = subparsers.add_parser('search_youtube')
parser_search.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_search.add_argument('--mini_data', action='store_true', default=False)
parser_similarity = subparsers.add_parser('calculate_similarity')
parser_similarity.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_similarity.add_argument('--mini_data', action='store_true', default=False)
parser_download_youtube = subparsers.add_parser('download_youtube')
parser_download_youtube.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_download_youtube.add_argument('--begin_index', type=int, default=0)
parser_download_youtube.add_argument('--end_index', type=int, required=True)
parser_download_youtube.add_argument('--mini_data', action='store_true', default=False)
parser_download_youtube_piano_solo = subparsers.add_parser('download_youtube_piano_solo')
parser_download_youtube_piano_solo.add_argument('--workspace', type=str, required=True, help='Directory of your workspace.')
parser_download_youtube_piano_solo.add_argument('--begin_index', type=int, default=0)
parser_download_youtube_piano_solo.add_argument('--end_index', type=int, required=True)
parser_download_youtube_piano_solo.add_argument('--mini_data', action='store_true', default=False)
# Parse arguments
args = parser.parse_args()
if args.mode == 'download_imslp_htmls':
download_imslp_htmls(args)
elif args.mode == 'download_wikipedia_htmls':
download_wikipedia_htmls(args)
elif args.mode == 'create_meta_csv':
create_meta_csv(args)
elif args.mode == 'search_youtube':
search_youtube(args)
elif args.mode == 'calculate_similarity':
calculate_similarity(args)
elif args.mode == 'download_youtube':
download_youtube(args)
elif args.mode == 'download_youtube_piano_solo':
download_youtube_piano_solo(args)
else:
raise Exception('Error argument!')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/garlong/giant-midi-piano.git
git@gitee.com:garlong/giant-midi-piano.git
garlong
giant-midi-piano
GiantMIDI-Piano
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385