# awesome-AI-books **Repository Path**: freeonsky/awesome-AI-books ## Basic Information - **Project Name**: awesome-AI-books - **Description**: No description available - **Primary Language**: Unknown - **License**: Not specified - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2025-02-07 - **Last Updated**: 2025-02-07 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # Awesome AI books Some awesome AI related books and pdfs for downloading and learning. ## Preface **This repo only used for learning, do not use in business.** Welcome for providing great books in this repo or tell me which great book you need and I will try to append it in this repo, any idea you can create issue or PR here. Due to github Large file storage limition, all books pdf stored in **Yandex.Disk**. Some often used **Mathematic Symbols** can refer this [page](https://github.com/zslucky/awesome-AI-books/blob/master/math-symbols.md) ## Content - [Organization with papers/researchs](https://github.com/zslucky/awesome-AI-books#organization-with-papersresearchs) - [Training ground](https://github.com/zslucky/awesome-AI-books#training-ground) - [Books](https://github.com/zslucky/awesome-AI-books#books) - [Introductory theory](https://github.com/zslucky/awesome-AI-books#introductory-theory) - [Mathematics](https://github.com/zslucky/awesome-AI-books#mathematics) - [Data mining](https://github.com/zslucky/awesome-AI-books#data-mining) - [Deep Learning](https://github.com/zslucky/awesome-AI-books#deep-learning) - [Philosophy](https://github.com/zslucky/awesome-AI-books#philosophy) - [Quantum with AI](https://github.com/zslucky/awesome-AI-books#quantum-with-ai) - [Quantum Basic](https://github.com/zslucky/awesome-AI-books#quantum-basic) - [Quantum AI](https://github.com/zslucky/awesome-AI-books#quantum-ai) - [Quantum Related Framework](https://github.com/zslucky/awesome-AI-books#quantum-related-framework) - [Libs With Online Books](https://github.com/zslucky/awesome-AI-books#libs-with-online-books) - [Reinforcement Learning](https://github.com/zslucky/awesome-AI-books#reinforcement-learning) - [Feature Selection](https://github.com/zslucky/awesome-AI-books#feature-selection) - [Machine Learning](https://github.com/zslucky/awesome-AI-books#machine-learning-1) - [Deep Learning](https://github.com/zslucky/awesome-AI-books#deep-learning-1) - [NLP](https://github.com/zslucky/awesome-AI-books#nlp) - [CV](https://github.com/zslucky/awesome-AI-books#cv) - [Meta Learning](https://github.com/zslucky/awesome-AI-books#meta-learning) - [Transfer Learning](https://github.com/zslucky/awesome-AI-books#transfer-learning) - [Auto ML](https://github.com/zslucky/awesome-AI-books#auto-ml) - [Dimensionality Reduction](https://github.com/zslucky/awesome-AI-books#dimensionality-reduction) - [Distributed training](https://github.com/zslucky/awesome-AI-books#distributed-training) ## Organization with papers/researchs - [Science](http://www.sciencemag.org/) - [Nature](https://www.nature.com/nature/) - [DeepMind Publications](https://deepmind.com/research/publications/) - [OpenAI Research](https://openai.com/research/) ## Training ground - [OpenAI Gym](https://gym.openai.com/): A toolkit for developing and comparing reinforcement learning algorithms. (Can play with [Atari](https://en.wikipedia.org/wiki/Atari), Box2d, MuJoCo etc...) - [DeepMind Pysc2](https://github.com/deepmind/pysc2): StarCraft II Learning Environment. - [TorchCraftAI](https://torchcraft.github.io/TorchCraftAI/): A bot platform for machine learning research on StarCraft®: Brood War® - [Valve Dota2](https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting): Dota2 game acessing api. ([CN doc](https://developer.valvesoftware.com/wiki/Dota_Bot_Scripting:zh-cn)) - [Google Dopamine](https://github.com/google/dopamine): Dopamine is a research framework for fast prototyping of reinforcement learning algorithms - [TextWorld](https://github.com/Microsoft/TextWorld): Microsoft - A learning environment sandbox for training and testing reinforcement learning (RL) agents on text-based games. - [Mini Grid](https://github.com/maximecb/gym-minigrid): Minimalistic gridworld environment for OpenAI Gym - [MAgent](https://github.com/geek-ai/MAgent): A Platform for Many-agent Reinforcement Learning - [XWorld](https://github.com/PaddlePaddle/XWorld): A C++/Python simulator package for reinforcement learning - [Neural MMO](https://github.com/openai/neural-mmo): A Massively Multiagent Game Environment - [MinAtar](https://github.com/kenjyoung/MinAtar): MinAtar is a testbed for AI agents which implements miniaturized version of several Atari 2600 games. - [craft-env](https://github.com/Feryal/craft-env): CraftEnv is a 2D crafting environment - [gym-sokoban](https://github.com/mpSchrader/gym-sokoban): Sokoban is Japanese for warehouse keeper and a traditional video game ## Books ### Introductory theory - [Artificial Intelligence-A Modern Approach (3rd Edition)](https://yadi.sk/i/G6NlUUV8SAVimg) - Stuart Russell & peter Norvig ### Mathematics - [A First Course in ProbabilityA First Course in Probability (8th)](https://yadi.sk/i/aDvGdqWlcXxbhQ) - Sheldon M Ross - [Convex Optimization](https://yadi.sk/i/9KGVXuFJs3kakg) - Stephen Boyd - [Elements of Information Theory Elements](https://yadi.sk/i/2YWnNsAeBc9qcA) - Thomas Cover & Jay A Thomas - [Discrete Mathematics and Its Applications 7th](https://yadi.sk/i/-r3jD4gB-8jn1A) - Kenneth H. Rosen - [Introduction to Linear Algebra (5th)](http://www.mediafire.com/file/f31dl0ghup7e6gk/Introduction_to_Linear_Algebra_5th_-_Gilbert_Strang.pdf/file) - Gilbert Strang - [Linear Algebra and Its Applications (5th)](https://yadi.sk/i/uWEQVrCquqw1Ug) - David C Lay - [Probability Theory The Logic of Science](https://yadi.sk/i/TKQYNPSKGNbdUw) - Edwin Thompson Jaynes - [Probability and Statistics 4th](https://yadi.sk/i/38jrMmEXnJQZqg) - Morris H. DeGroot - [Statistical Inference (2nd)](https://yadi.sk/i/HWrbKYrYdpNMYw) - Roger Casella - [信息论基础 (原书Elements of Information Theory Elements第2版)](https://yadi.sk/i/HqGOyAkRCxCwIQ) - Thomas Cover & Jay A Thomas - [凸优化 (原书Convex Optimization)](https://yadi.sk/i/zUPPAi58v1gfkw) - Stephen Boyd - [数理统计学教程](https://yadi.sk/i/ikuXCrNgRCEVnw) - 陈希儒 - [数学之美 2th](https://yadi.sk/i/QJPxzK4ZBuF8iQ) - 吴军 - [概率论基础教程 (原书A First Course in ProbabilityA First Course in Probability第9版)](https://yadi.sk/i/wQZQ80UFLFZ48w) - Sheldon M Ross - [线性代数及其应用 (原书Linear Algebra and Its Applications第3版)](https://yadi.sk/i/cNNBS4eaLleR3g) - David C Lay - [统计推断 (原书Statistical Inference第二版)](https://yadi.sk/i/ksHAFRUSaoyk9g) - Roger Casella - [离散数学及其应用 (原书Discrete Mathematics and Its Applications第7版)](https://yadi.sk/i/kJHMmMA4ot66bw) - Kenneth H.Rosen ### Data mining - [Introduction to Data Mining](https://yadi.sk/i/H7wc_FaMDl9QXQ) - Pang-Ning Tan - [Programming Collective Intelligence](https://yadi.sk/i/YTjrJWu7kXVrGQ) - Toby Segaran - [Feature Engineering for Machine Learning](https://yadi.sk/i/WiO7lageMIuIfg) - Amanda Casari, Alice Zheng - [集体智慧编程](https://yadi.sk/i/0DW5reTrXQ6peQ) - Toby Segaran ### Machine Learning - [Information Theory, Inference and Learning Algorithms](https://yadi.sk/i/JXYto8yE6PJO8Q) - David J C MacKay - [Machine Learning](https://yadi.sk/i/03Jg9WMzgD2YlA) - Tom M. Mitchell - [Pattern Recognition and Machine Learning](https://yadi.sk/i/8ffTCaMH0bM8uQ) - Christopher Bishop - [The Elements of Statistical Learning](https://yadi.sk/i/hfatiRyBCwfcWw) - Trevor Hastie - [Machine Learning for OpenCV](https://yadi.sk/i/_UdlHqwuR-Wdxg) - Michael Beyeler ([Source code here](https://github.com/zslucky/awesome-AI-books/tree/master/resources/Machine%20Learning%20for%20OpenCV)) - [机器学习](https://yadi.sk/i/vfoPTRRfgtEQKA) - 周志华 - [机器学习 (原书Machine Learning)](https://yadi.sk/i/jTNv4kzG-lmlYQ) - Tom M. Mitchell - [统计学习方法](https://yadi.sk/i/R08dbDMOJb3KKw) - 李航 ### Deep Learning - Online Quick learning - [Dive into Deep Learning](https://d2l.ai/) - (Using MXNet)An interactive deep learning book with code, math, and discussions. - [d2l-pytorch](https://github.com/dsgiitr/d2l-pytorch) - (Dive into Deep Learning) pytorch version. - [动手学深度学习](https://zh.d2l.ai/) - (Dive into Deep Learning) for chinese. - [Deep Learning](https://yadi.sk/i/2fOK_Xib-JlocQ) - Ian Goodfellow & Yoshua Bengio & Aaron Courville - [Deep Learning Methods and Applications](https://yadi.sk/i/uQAWfeKVmenmkg) - Li Deng & Dong Yu - [Learning Deep Architectures for AI](https://yadi.sk/i/AWpRq2hSB9RmoQ) - Yoshua Bengio - [Machine Learning An Algorithmic Perspective (2nd)](https://yadi.sk/i/1gOQ-Y5r4uP6Kw) - Stephen Marsland - [Neural Network Design (2nd)](https://yadi.sk/i/5LLMPfNcuaPTvQ) - Martin Hagan - [Neural Networks and Learning Machines (3rd)](https://yadi.sk/i/6s9AauRP1OGT2Q) - Simon Haykin - [Neural Networks for Applied Sciences and Engineering](https://yadi.sk/i/JK7aj5TsmoC1dA) - Sandhya Samarasinghe - [深度学习 (原书Deep Learning)](https://yadi.sk/i/DzzZU_QPosSTBQ) - Ian Goodfellow & Yoshua Bengio & Aaron Courville - [神经网络与机器学习 (原书Neural Networks and Learning Machines)](https://yadi.sk/i/ogQff9JpLEdHMg) - Simon Haykin - [神经网络设计 (原书Neural Network Design)](https://yadi.sk/i/uR2OAHHgnZHUuw) - Martin Hagan ### Philosophy - **COMMERCIAL** [Human Compatible: Artificial Intelligence and the Problem of Control](https://www.amazon.com/Human-Compatible-Artificial-Intelligence-Problem-ebook/dp/B07N5J5FTS) - Stuart Russell - **COMMERCIAL** [Life 3.0: Being Human in the Age of Artificial Intelligence](https://www.amazon.com/Life-3-0-Being-Artificial-Intelligence/dp/1101946598) - Max Tegmark - **COMMERCIAL** [Superintelligence: Paths, Dangers, Strategies](https://www.amazon.com/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0198739834/ref=pd_sbs_14_t_0/146-0357100-6717505?_encoding=UTF8&pd_rd_i=0198739834&pd_rd_r=676ace91-552c-4865-a8d3-6273db5418bf&pd_rd_w=zYEu2&pd_rd_wg=hQdGQ&pf_rd_p=5cfcfe89-300f-47d2-b1ad-a4e27203a02a&pf_rd_r=DTH77KT4FSVRMJ47GBVQ&psc=1&refRID=DTH77KT4FSVRMJ47GBVQ) - Nick Bostrom ## Quantum with AI - #### Quantum Basic - [Quantum Computing Primer](https://www.dwavesys.com/tutorials/background-reading-series/quantum-computing-primer#h1-0) - D-Wave quantum computing primer - [Quantum computing 101](https://uwaterloo.ca/institute-for-quantum-computing/quantum-computing-101) - Quantum computing 101, from University of Waterloo - [pdf](https://yadi.sk/i/0VCfWmb3HrrPuw) Quantum Computation and Quantum Information - Nielsen - [pdf](https://yadi.sk/i/mHoyVef8RaG0aA) 量子计算和量子信息(量子计算部分)- Nielsen - #### Quantum AI - [Quantum neural networks](http://axon.cs.byu.edu/papers/ezhov.fdisis00.pdf) - [An Artificial Neuron Implemented on an Actual Quantum Processor](https://arxiv.org/pdf/1811.02266.pdf) - [Classification with Quantum Neural Networks on Near Term Processors](https://arxiv.org/pdf/1802.06002.pdf) - [Black Holes as Brains: Neural Networks with Area Law Entropy](https://arxiv.org/pdf/1801.03918.pdf) - #### Quantum Related Framework - [ProjectQ](https://github.com/ProjectQ-Framework/ProjectQ) - ProjectQ is an open source effort for quantum computing. ## Libs With Online Books - #### Reinforcement Learning - [A3C](https://arxiv.org/pdf/1602.01783.pdf) - Google DeepMind Asynchronous Advantage Actor-Critic algorithm - [Q-Learning](http://www.gatsby.ucl.ac.uk/~dayan/papers/cjch.pdf) SARSA [DQN](https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf) [DDQN](https://arxiv.org/pdf/1509.06461.pdf) - Q-Learning is a value-based Reinforcement Learning algorithm - [DDPG](https://arxiv.org/pdf/1509.02971.pdf) - Deep Deterministic Policy Gradient, - [Large-Scale Curiosity](https://arxiv.org/pdf/1808.04355.pdf) - Large-Scale Study of Curiosity-Driven Learning - [PPO](https://arxiv.org/pdf/1707.06347.pdf) - OpenAI Proximal Policy Optimization Algorithms - [RND](https://arxiv.org/pdf/1810.12894.pdf) - OpenAI Random Network Distillation, an exploration bonus for deep reinforcement learning method. - [VIME](https://arxiv.org/pdf/1605.09674.pdf) - OpenAI Variational Information Maximizing Exploration - [DQV](https://arxiv.org/pdf/1810.00368.pdf) - Deep Quality-Value (DQV) Learning - [ERL](https://arxiv.org/pdf/1805.07917.pdf) - Evolution-Guided Policy Gradient in Reinforcement Learning - [MF Multi-Agent RL](https://arxiv.org/pdf/1802.05438.pdf) - Mean Field Multi-Agent Reinforcement Learning. (this paper include MF-Q and MF-AC) - [MAAC](https://arxiv.org/pdf/1810.02912.pdf) - Actor-Attention-Critic for Multi-Agent Reinforcement Learning - #### Feature Selection - [scikit-feature](http://featureselection.asu.edu/algorithms.php) - A collection of feature selection algorithms, available on [Github](https://github.com/jundongl/scikit-feature) - #### Machine Learning - [Xgboost](https://xgboost.readthedocs.io/en/latest/tutorials/model.html) (**Python, R, JVM, Julia, CLI**) - Xgboost lib's document. - [LightGBM](https://lightgbm.readthedocs.io/en/latest/Features.html#) (**Python, R, CLI**) - Microsoft lightGBM lib's features document. - [CatBoost](https://arxiv.org/pdf/1706.09516.pdf) (**Python, R, CLI**) - Yandex Catboost lib's key algorithm pdf papper. - [StackNet](https://github.com/kaz-Anova/StackNet) (**Java, CLI**) - Some model stacking algorithms implemented in this lib. - [RGF](https://arxiv.org/pdf/1109.0887.pdf) - Learning Nonlinear Functions Using `Regularized Greedy Forest` (multi-core implementation [FastRGF](https://github.com/RGF-team/rgf/tree/master/FastRGF)) - [FM](https://www.csie.ntu.edu.tw/~b97053/paper/Rendle2010FM.pdf), [FastFM](https://arxiv.org/pdf/1505.00641.pdf), [FFM](https://arxiv.org/pdf/1701.04099.pdf), [XDeepFM](https://arxiv.org/pdf/1803.05170.pdf) - Factorization Machines and some extended Algorithms - #### Deep Learning - [GNN Papers](https://github.com/thunlp/GNNPapers) - Must-read papers on graph neural networks (GNN) - [EfficientNet](https://arxiv.org/pdf/1905.11946.pdf) - Rethinking Model Scaling for Convolutional Neural Networks - [DenseNet](https://arxiv.org/pdf/1608.06993.pdf) - Densely Connected Convolutional Networks - #### NLP - [XLNet](https://arxiv.org/pdf/1906.08237.pdf) - [repo](https://github.com/zihangdai/xlnet) XLNet: Generalized Autoregressive Pretraining for Language Understanding - [BERT](https://arxiv.org/pdf/1810.04805.pdf) - Pre-training of Deep Bidirectional Transformers for Language Understanding - #### CV - [Fast R-CNN](https://arxiv.org/pdf/1504.08083.pdf) - Fast Region-based Convolutional Network method (Fast R-CNN) for object detection - [Mask R-CNN](https://arxiv.org/pdf/1703.06870.pdf) - Mask R-CNN, extends Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing branch for bounding box recognition. - [GQN](http://science.sciencemag.org/content/360/6394/1204/tab-pdf) - DeepMind Generative Query Network, Neural scene representation and rendering - #### Meta Learning - [MAML](https://arxiv.org/pdf/1703.03400.pdf) - Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks - #### Transfer Learning - [GCN](https://arxiv.org/pdf/1803.08035.pdf) - Zero-shot Recognition via Semantic Embeddings and Knowledge Graphs - #### Auto ML - [TPOT](https://github.com/EpistasisLab/tpot) (**Python**) - TPOT is a lib for AutoML. - [Auto-sklearn](https://automl.github.io/auto-sklearn/master/) (**Python**) - auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator - [Auto-Keras])(https://autokeras.com/) (**Python**) - Auto-Keras is an open source software library for automated machine learning (AutoML). It is developed by DATA Lab - [TransmogrifAI](https://docs.transmogrif.ai/en/stable/index.html) (**JVM**) - TransmogrifAI (pronounced trăns-mŏgˈrə-fī) is an AutoML library written in Scala that runs on top of Spark - [Auto-WEKAA](http://www.cs.ubc.ca/labs/beta/Projects/autoweka/) - Provides automatic selection of models and hyperparameters for [WEKA](https://www.cs.waikato.ac.nz/ml/weka/). - [MLBox](https://github.com/AxeldeRomblay/MLBox) (**Python**) - MLBox is a powerful Automated Machine Learning python library - #### Dimensionality Reduction - [t-SNE](http://www.cs.toronto.edu/~hinton/absps/tsne.pdf) (**Non-linear/Non-params**) - T-distributed Stochastic Neighbor Embedding (t-SNE) is a machine learning algorithm for visualization - [PCA](https://www.cs.cmu.edu/~elaw/papers/pca.pdf) (**Linear**) - Principal component analysis - [LDA](https://www.isip.piconepress.com/publications/reports/1998/isip/lda/lda_theory.pdf) (**Linear**) - Linear Discriminant Analysis - [LLE](https://cs.nyu.edu/~roweis/lle/papers/lleintro.pdf) (**Non-linear**) - Locally linear embedding - [Laplacian Eigenmaps](http://web.cse.ohio-state.edu/~belkin.8/papers/LEM_NC_03.pdf) - Laplacian Eigenmaps for Dimensionality Reduction and Data Representation - [Sammon Mapping](http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0910/henderson.pdf) (**Non-linear**) - Sammon mapping is designed to minimise the differences between corresponding inter-point distances in the two spaces ## Distributed training - [Horovod](https://github.com/horovod/horovod#usage) - Horovod is a distributed training framework for TensorFlow, Keras, PyTorch, and MXNet. The goal of Horovod is to make distributed Deep Learning fast and easy to use. ## Contributors ### Code Contributors This project exists thanks to all the people who contribute. [[Contribute](CONTRIBUTING.md)]. ### Financial Contributors Become a financial contributor and help us sustain our community. [[Contribute](https://opencollective.com/awesome-AI-books/contribute)] #### Individuals #### Organizations Support this project with your organization. Your logo will show up here with a link to your website. [[Contribute](https://opencollective.com/awesome-AI-books/contribute)]