代码拉取完成,页面将自动刷新
同步操作将从 RT-Thread/rt-thread 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/*
* Copyright (c) 2006-2024, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2006-03-16 Bernard the first version
* 2006-05-25 Bernard rewrite vsprintf
* 2006-08-10 Bernard add rt_show_version
* 2010-03-17 Bernard remove rt_strlcpy function
* fix gcc compiling issue.
* 2010-04-15 Bernard remove weak definition on ICCM16C compiler
* 2012-07-18 Arda add the alignment display for signed integer
* 2012-11-23 Bernard fix IAR compiler error.
* 2012-12-22 Bernard fix rt_kprintf issue, which found by Grissiom.
* 2013-06-24 Bernard remove rt_kprintf if RT_USING_CONSOLE is not defined.
* 2013-09-24 aozima make sure the device is in STREAM mode when used by rt_kprintf.
* 2015-07-06 Bernard Add rt_assert_handler routine.
* 2021-02-28 Meco Man add RT_KSERVICE_USING_STDLIB
* 2021-12-20 Meco Man implement rt_strcpy()
* 2022-01-07 Gabriel add __on_rt_assert_hook
* 2022-06-04 Meco Man remove strnlen
* 2022-08-24 Yunjie make rt_memset word-independent to adapt to ti c28x (16bit word)
* 2022-08-30 Yunjie make rt_vsnprintf adapt to ti c28x (16bit int)
* 2023-02-02 Bernard add Smart ID for logo version show
* 2023-10-16 Shell Add hook point for rt_malloc services
* 2023-10-21 Shell support the common backtrace API which is arch-independent
* 2023-12-10 xqyjlj perf rt_hw_interrupt_disable/enable, fix memheap lock
* 2024-03-10 Meco Man move std libc related functions to rtklibc
*/
#include <rtthread.h>
/* include rt_hw_backtrace macro defined in cpuport.h */
#define RT_HW_INCLUDE_CPUPORT
#include <rthw.h>
#define DBG_TAG "kernel.service"
#ifdef RT_DEBUG_DEVICE
#define DBG_LVL DBG_LOG
#else
#define DBG_LVL DBG_WARNING
#endif /* defined (RT_DEBUG_DEVICE) */
#include <rtdbg.h>
#ifdef RT_USING_MODULE
#include <dlmodule.h>
#endif /* RT_USING_MODULE */
#ifdef RT_USING_SMART
#include <lwp.h>
#include <lwp_user_mm.h>
#endif
/**
* @addtogroup KernelService
* @{
*/
#if defined(RT_USING_DEVICE) && defined(RT_USING_CONSOLE)
static rt_device_t _console_device = RT_NULL;
#endif
rt_weak void rt_hw_us_delay(rt_uint32_t us)
{
(void) us;
LOG_W("rt_hw_us_delay() doesn't support for this board."
"Please consider implementing rt_hw_us_delay() in another file.");
}
rt_weak void rt_hw_cpu_reset(void)
{
LOG_W("rt_hw_cpu_reset() doesn't support for this board."
"Please consider implementing rt_hw_cpu_reset() in another file.");
return;
}
rt_weak void rt_hw_cpu_shutdown(void)
{
LOG_I("CPU shutdown...");
LOG_W("Using default rt_hw_cpu_shutdown()."
"Please consider implementing rt_hw_cpu_shutdown() in another file.");
rt_hw_interrupt_disable();
RT_ASSERT(0);
return;
}
/**
* @note can be overridden by cpuport.h which is defined by a specific arch
*/
#ifndef RT_HW_BACKTRACE_FRAME_GET_SELF
#ifdef __GNUC__
#define RT_HW_BACKTRACE_FRAME_GET_SELF(frame) do { \
(frame)->fp = (rt_uintptr_t)__builtin_frame_address(0U); \
(frame)->pc = ({__label__ pc; pc: (rt_uintptr_t)&&pc;}); \
} while (0)
#else
#define RT_HW_BACKTRACE_FRAME_GET_SELF(frame) do { \
(frame)->fp = 0; \
(frame)->pc = 0; \
} while (0)
#endif /* __GNUC__ */
#endif /* RT_HW_BACKTRACE_FRAME_GET_SELF */
/**
* @brief Get the inner most frame of target thread
*
* @param thread the thread which frame belongs to
* @param frame the specified frame to be unwound
* @return rt_err_t 0 is succeed, otherwise a failure
*/
rt_weak rt_err_t rt_hw_backtrace_frame_get(rt_thread_t thread, struct rt_hw_backtrace_frame *frame)
{
RT_UNUSED(thread);
RT_UNUSED(frame);
LOG_W("%s is not implemented", __func__);
return -RT_ENOSYS;
}
/**
* @brief Unwind the target frame
*
* @param thread the thread which frame belongs to
* @param frame the specified frame to be unwound
* @return rt_err_t 0 is succeed, otherwise a failure
*/
rt_weak rt_err_t rt_hw_backtrace_frame_unwind(rt_thread_t thread, struct rt_hw_backtrace_frame *frame)
{
RT_UNUSED(thread);
RT_UNUSED(frame);
LOG_W("%s is not implemented", __func__);
return -RT_ENOSYS;
}
rt_weak const char *rt_hw_cpu_arch(void)
{
return "unknown";
}
/**
* @brief This function will show the version of rt-thread rtos
*/
void rt_show_version(void)
{
rt_kprintf("\n \\ | /\n");
#if defined(RT_USING_SMART)
rt_kprintf("- RT - Thread Smart Operating System\n");
#elif defined(RT_USING_NANO)
rt_kprintf("- RT - Thread Nano Operating System\n");
#else
rt_kprintf("- RT - Thread Operating System\n");
#endif
rt_kprintf(" / | \\ %d.%d.%d build %s %s\n",
(rt_int32_t)RT_VERSION_MAJOR, (rt_int32_t)RT_VERSION_MINOR, (rt_int32_t)RT_VERSION_PATCH, __DATE__, __TIME__);
rt_kprintf(" 2006 - 2024 Copyright by RT-Thread team\n");
}
RTM_EXPORT(rt_show_version);
#ifdef RT_USING_CONSOLE
#ifdef RT_USING_DEVICE
/**
* @brief This function returns the device using in console.
*
* @return Returns the console device pointer or RT_NULL.
*/
rt_device_t rt_console_get_device(void)
{
return _console_device;
}
RTM_EXPORT(rt_console_get_device);
/**
* @brief This function will set a device as console device.
* After set a device to console, all output of rt_kprintf will be
* redirected to this new device.
*
* @param name is the name of new console device.
*
* @return the old console device handler on successful, or RT_NULL on failure.
*/
rt_device_t rt_console_set_device(const char *name)
{
rt_device_t new_device, old_device;
/* save old device */
old_device = _console_device;
/* find new console device */
new_device = rt_device_find(name);
/* check whether it's a same device */
if (new_device == old_device) return RT_NULL;
if (new_device != RT_NULL)
{
if (_console_device != RT_NULL)
{
/* close old console device */
rt_device_close(_console_device);
}
/* set new console device */
rt_device_open(new_device, RT_DEVICE_OFLAG_RDWR | RT_DEVICE_FLAG_STREAM);
_console_device = new_device;
}
return old_device;
}
RTM_EXPORT(rt_console_set_device);
#endif /* RT_USING_DEVICE */
rt_weak void rt_hw_console_output(const char *str)
{
/* empty console output */
RT_UNUSED(str);
}
RTM_EXPORT(rt_hw_console_output);
#ifdef RT_USING_THREADSAFE_PRINTF
/* system console lock */
static struct rt_spinlock _syscon_lock = RT_SPINLOCK_INIT;
/* lock of kprintf buffer */
static struct rt_spinlock _prbuf_lock = RT_SPINLOCK_INIT;
/* current user of system console */
static rt_thread_t _pr_curr_user;
#ifdef RT_USING_DEBUG
static rt_base_t _pr_critical_level;
#endif /* RT_USING_DEBUG */
/* nested level of current user */
static volatile int _pr_curr_user_nested;
rt_thread_t rt_console_current_user(void)
{
return _pr_curr_user;
}
static void _console_take(void)
{
rt_ubase_t level = rt_spin_lock_irqsave(&_syscon_lock);
rt_thread_t self_thread = rt_thread_self();
rt_base_t critical_level;
RT_UNUSED(critical_level);
while (_pr_curr_user != self_thread)
{
if (_pr_curr_user == RT_NULL)
{
/* no preemption is allowed to avoid dead lock */
critical_level = rt_enter_critical();
#ifdef RT_USING_DEBUG
_pr_critical_level = _syscon_lock.critical_level;
_syscon_lock.critical_level = critical_level;
#endif
_pr_curr_user = self_thread;
break;
}
else
{
rt_spin_unlock_irqrestore(&_syscon_lock, level);
rt_thread_yield();
level = rt_spin_lock_irqsave(&_syscon_lock);
}
}
_pr_curr_user_nested++;
rt_spin_unlock_irqrestore(&_syscon_lock, level);
}
static void _console_release(void)
{
rt_ubase_t level = rt_spin_lock_irqsave(&_syscon_lock);
rt_thread_t self_thread = rt_thread_self();
RT_UNUSED(self_thread);
RT_ASSERT(_pr_curr_user == self_thread);
_pr_curr_user_nested--;
if (!_pr_curr_user_nested)
{
_pr_curr_user = RT_NULL;
#ifdef RT_USING_DEBUG
rt_exit_critical_safe(_syscon_lock.critical_level);
_syscon_lock.critical_level = _pr_critical_level;
#else
rt_exit_critical();
#endif
}
rt_spin_unlock_irqrestore(&_syscon_lock, level);
}
#define CONSOLE_TAKE _console_take()
#define CONSOLE_RELEASE _console_release()
#define PRINTF_BUFFER_TAKE rt_ubase_t level = rt_spin_lock_irqsave(&_prbuf_lock)
#define PRINTF_BUFFER_RELEASE rt_spin_unlock_irqrestore(&_prbuf_lock, level)
#else
#define CONSOLE_TAKE
#define CONSOLE_RELEASE
#define PRINTF_BUFFER_TAKE
#define PRINTF_BUFFER_RELEASE
#endif /* RT_USING_THREADSAFE_PRINTF */
/**
* @brief This function will put string to the console.
*
* @param str is the string output to the console.
*/
static void _kputs(const char *str, long len)
{
RT_UNUSED(len);
CONSOLE_TAKE;
#ifdef RT_USING_DEVICE
if (_console_device == RT_NULL)
{
rt_hw_console_output(str);
}
else
{
rt_device_write(_console_device, 0, str, len);
}
#else
rt_hw_console_output(str);
#endif /* RT_USING_DEVICE */
CONSOLE_RELEASE;
}
/**
* @brief This function will put string to the console.
*
* @param str is the string output to the console.
*/
void rt_kputs(const char *str)
{
if (!str)
{
return;
}
_kputs(str, rt_strlen(str));
}
/**
* @brief This function will print a formatted string on system console.
*
* @param fmt is the format parameters.
*
* @return The number of characters actually written to buffer.
*/
rt_weak int rt_kprintf(const char *fmt, ...)
{
va_list args;
rt_size_t length = 0;
static char rt_log_buf[RT_CONSOLEBUF_SIZE];
va_start(args, fmt);
PRINTF_BUFFER_TAKE;
/* the return value of vsnprintf is the number of bytes that would be
* written to buffer had if the size of the buffer been sufficiently
* large excluding the terminating null byte. If the output string
* would be larger than the rt_log_buf, we have to adjust the output
* length. */
length = rt_vsnprintf(rt_log_buf, sizeof(rt_log_buf) - 1, fmt, args);
if (length > RT_CONSOLEBUF_SIZE - 1)
{
length = RT_CONSOLEBUF_SIZE - 1;
}
_kputs(rt_log_buf, length);
PRINTF_BUFFER_RELEASE;
va_end(args);
return length;
}
RTM_EXPORT(rt_kprintf);
#endif /* RT_USING_CONSOLE */
/**
* @brief Print backtrace of current thread to system console device
*
* @return rt_err_t 0 is success, otherwise a failure
*/
rt_weak rt_err_t rt_backtrace(void)
{
struct rt_hw_backtrace_frame frame;
rt_thread_t thread = rt_thread_self();
RT_HW_BACKTRACE_FRAME_GET_SELF(&frame);
if (!frame.fp)
return -RT_EINVAL;
/* we don't want this frame to be printed which is nearly garbage info */
rt_hw_backtrace_frame_unwind(thread, &frame);
return rt_backtrace_frame(thread, &frame);
}
/**
* @brief Print backtrace from frame to system console device
*
* @param thread the thread which frame belongs to
* @param frame where backtrace starts from
* @return rt_err_t 0 is success, otherwise a failure
*/
rt_weak rt_err_t rt_backtrace_frame(rt_thread_t thread, struct rt_hw_backtrace_frame *frame)
{
long nesting = 0;
rt_kprintf("please use: addr2line -e rtthread.elf -a -f");
while (nesting < RT_BACKTRACE_LEVEL_MAX_NR)
{
rt_kprintf(" 0x%lx", (rt_ubase_t)frame->pc);
if (rt_hw_backtrace_frame_unwind(thread, frame))
{
break;
}
nesting++;
}
rt_kprintf("\n");
return RT_EOK;
}
/**
* @brief Print backtrace from buffer to system console
*
* @param buffer where traced frames saved
* @param buflen number of items in buffer
* @return rt_err_t 0 is success, otherwise a failure
*/
rt_weak rt_err_t rt_backtrace_formatted_print(rt_ubase_t *buffer, long buflen)
{
rt_kprintf("please use: addr2line -e rtthread.elf -a -f");
for (size_t i = 0; i < buflen && buffer[i] != 0; i++)
{
rt_kprintf(" 0x%lx", (rt_ubase_t)buffer[i]);
}
rt_kprintf("\n");
return RT_EOK;
}
/**
* @brief Print backtrace from frame to the given buffer
*
* @param thread the thread which frame belongs to
* @param frame where backtrace starts from. NULL if it's the current one
* @param skip the number of frames to discarded counted from calling function.
* Noted that the inner most frame is always discarded and not counted,
* which is obviously reasonable since that's this function itself.
* @param buffer where traced frames saved
* @param buflen max number of items can be saved in buffer. If there are no more
* than buflen items to be saved, there will be a NULL after the
* last saved item in the buffer.
* @return rt_err_t 0 is success, otherwise a failure
*/
rt_weak rt_err_t rt_backtrace_to_buffer(rt_thread_t thread,
struct rt_hw_backtrace_frame *frame,
long skip,
rt_ubase_t *buffer,
long buflen)
{
long nesting = 0;
struct rt_hw_backtrace_frame cur_frame;
if (!thread)
return -RT_EINVAL;
RT_ASSERT(rt_object_get_type(&thread->parent) == RT_Object_Class_Thread);
if (!frame)
{
frame = &cur_frame;
RT_HW_BACKTRACE_FRAME_GET_SELF(frame);
if (!frame->fp)
return -RT_EINVAL;
}
/* discard frames as required. The inner most is always threw. */
do {
rt_hw_backtrace_frame_unwind(thread, frame);
} while (skip-- > 0);
while (nesting < buflen)
{
*buffer++ = (rt_ubase_t)frame->pc;
if (rt_hw_backtrace_frame_unwind(thread, frame))
{
break;
}
nesting++;
}
if (nesting < buflen)
*buffer = RT_NULL;
return RT_EOK;
}
/**
* @brief Print backtrace of a thread to system console device
*
* @param thread which call stack is traced
* @return rt_err_t 0 is success, otherwise a failure
*/
rt_err_t rt_backtrace_thread(rt_thread_t thread)
{
rt_err_t rc;
struct rt_hw_backtrace_frame frame;
if (thread)
{
rc = rt_hw_backtrace_frame_get(thread, &frame);
if (rc == RT_EOK)
{
rc = rt_backtrace_frame(thread, &frame);
}
}
else
{
rc = -RT_EINVAL;
}
return rc;
}
#if defined(RT_USING_LIBC) && defined(RT_USING_FINSH)
#include <stdlib.h> /* for string service */
static void cmd_backtrace(int argc, char** argv)
{
rt_uintptr_t pid;
char *end_ptr;
if (argc != 2)
{
if (argc == 1)
{
rt_kprintf("[INFO] No thread specified\n"
"[HELP] You can use commands like: backtrace %p\n"
"Printing backtrace of calling stack...\n",
rt_thread_self());
rt_backtrace();
return ;
}
else
{
rt_kprintf("please use: backtrace [thread_address]\n");
return;
}
}
pid = strtoul(argv[1], &end_ptr, 0);
if (end_ptr == argv[1])
{
rt_kprintf("Invalid input: %s\n", argv[1]);
return ;
}
if (pid && rt_object_get_type((void *)pid) == RT_Object_Class_Thread)
{
rt_thread_t target = (rt_thread_t)pid;
rt_kprintf("backtrace %s(0x%lx), from %s\n", target->parent.name, pid, argv[1]);
rt_backtrace_thread(target);
}
else
rt_kprintf("Invalid pid: %ld\n", pid);
}
MSH_CMD_EXPORT_ALIAS(cmd_backtrace, backtrace, print backtrace of a thread);
#endif /* RT_USING_LIBC */
#if defined(RT_USING_HEAP) && !defined(RT_USING_USERHEAP)
#ifdef RT_USING_HOOK
static void (*rt_malloc_hook)(void **ptr, rt_size_t size);
static void (*rt_realloc_entry_hook)(void **ptr, rt_size_t size);
static void (*rt_realloc_exit_hook)(void **ptr, rt_size_t size);
static void (*rt_free_hook)(void **ptr);
/**
* @ingroup Hook
* @{
*/
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function.
*/
void rt_malloc_sethook(void (*hook)(void **ptr, rt_size_t size))
{
rt_malloc_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function.
*/
void rt_realloc_set_entry_hook(void (*hook)(void **ptr, rt_size_t size))
{
rt_realloc_entry_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is allocated from heap memory.
*
* @param hook the hook function.
*/
void rt_realloc_set_exit_hook(void (*hook)(void **ptr, rt_size_t size))
{
rt_realloc_exit_hook = hook;
}
/**
* @brief This function will set a hook function, which will be invoked when a memory
* block is released to heap memory.
*
* @param hook the hook function
*/
void rt_free_sethook(void (*hook)(void **ptr))
{
rt_free_hook = hook;
}
/**@}*/
#endif /* RT_USING_HOOK */
#if defined(RT_USING_HEAP_ISR)
static struct rt_spinlock _heap_spinlock;
#elif defined(RT_USING_MUTEX)
static struct rt_mutex _lock;
#endif
rt_inline void _heap_lock_init(void)
{
#if defined(RT_USING_HEAP_ISR)
rt_spin_lock_init(&_heap_spinlock);
#elif defined(RT_USING_MUTEX)
rt_mutex_init(&_lock, "heap", RT_IPC_FLAG_PRIO);
#endif
}
rt_inline rt_base_t _heap_lock(void)
{
#if defined(RT_USING_HEAP_ISR)
return rt_spin_lock_irqsave(&_heap_spinlock);
#elif defined(RT_USING_MUTEX)
if (rt_thread_self())
return rt_mutex_take(&_lock, RT_WAITING_FOREVER);
else
return RT_EOK;
#else
rt_enter_critical();
return RT_EOK;
#endif
}
rt_inline void _heap_unlock(rt_base_t level)
{
#if defined(RT_USING_HEAP_ISR)
rt_spin_unlock_irqrestore(&_heap_spinlock, level);
#elif defined(RT_USING_MUTEX)
RT_ASSERT(level == RT_EOK);
if (rt_thread_self())
rt_mutex_release(&_lock);
#else
rt_exit_critical();
#endif
}
#ifdef RT_USING_UTESTCASES
/* export to utest to observe the inner statements */
#ifdef _MSC_VER
#define rt_heap_lock() _heap_lock()
#define rt_heap_unlock() _heap_unlock()
#else
rt_base_t rt_heap_lock(void) __attribute__((alias("_heap_lock")));
void rt_heap_unlock(rt_base_t level) __attribute__((alias("_heap_unlock")));
#endif /* _MSC_VER */
#endif
#if defined(RT_USING_SMALL_MEM_AS_HEAP)
static rt_smem_t system_heap;
rt_inline void _smem_info(rt_size_t *total,
rt_size_t *used, rt_size_t *max_used)
{
if (total)
*total = system_heap->total;
if (used)
*used = system_heap->used;
if (max_used)
*max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
system_heap = rt_smem_init(_name, _start, _size)
#define _MEM_MALLOC(_size) \
rt_smem_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize)\
rt_smem_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
rt_smem_free(_ptr)
#define _MEM_INFO(_total, _used, _max) \
_smem_info(_total, _used, _max)
#elif defined(RT_USING_MEMHEAP_AS_HEAP)
static struct rt_memheap system_heap;
void *_memheap_alloc(struct rt_memheap *heap, rt_size_t size);
void _memheap_free(void *rmem);
void *_memheap_realloc(struct rt_memheap *heap, void *rmem, rt_size_t newsize);
#define _MEM_INIT(_name, _start, _size) \
do {\
rt_memheap_init(&system_heap, _name, _start, _size); \
system_heap.locked = RT_TRUE; \
} while(0)
#define _MEM_MALLOC(_size) \
_memheap_alloc(&system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize) \
_memheap_realloc(&system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
_memheap_free(_ptr)
#define _MEM_INFO(_total, _used, _max) \
rt_memheap_info(&system_heap, _total, _used, _max)
#elif defined(RT_USING_SLAB_AS_HEAP)
static rt_slab_t system_heap;
rt_inline void _slab_info(rt_size_t *total,
rt_size_t *used, rt_size_t *max_used)
{
if (total)
*total = system_heap->total;
if (used)
*used = system_heap->used;
if (max_used)
*max_used = system_heap->max;
}
#define _MEM_INIT(_name, _start, _size) \
system_heap = rt_slab_init(_name, _start, _size)
#define _MEM_MALLOC(_size) \
rt_slab_alloc(system_heap, _size)
#define _MEM_REALLOC(_ptr, _newsize) \
rt_slab_realloc(system_heap, _ptr, _newsize)
#define _MEM_FREE(_ptr) \
rt_slab_free(system_heap, _ptr)
#define _MEM_INFO _slab_info
#else
#define _MEM_INIT(...)
#define _MEM_MALLOC(...) RT_NULL
#define _MEM_REALLOC(...) RT_NULL
#define _MEM_FREE(...)
#define _MEM_INFO(...)
#endif
/**
* @brief This function will do the generic system heap initialization.
*
* @param begin_addr the beginning address of system page.
*
* @param end_addr the end address of system page.
*/
void rt_system_heap_init_generic(void *begin_addr, void *end_addr)
{
rt_uintptr_t begin_align = RT_ALIGN((rt_uintptr_t)begin_addr, RT_ALIGN_SIZE);
rt_uintptr_t end_align = RT_ALIGN_DOWN((rt_uintptr_t)end_addr, RT_ALIGN_SIZE);
RT_ASSERT(end_align > begin_align);
/* Initialize system memory heap */
_MEM_INIT("heap", (void *)begin_align, end_align - begin_align);
/* Initialize multi thread contention lock */
_heap_lock_init();
}
/**
* @brief This function will init system heap. User can override this API to
* complete other works, like heap sanitizer initialization.
*
* @param begin_addr the beginning address of system page.
*
* @param end_addr the end address of system page.
*/
rt_weak void rt_system_heap_init(void *begin_addr, void *end_addr)
{
rt_system_heap_init_generic(begin_addr, end_addr);
}
/**
* @brief Allocate a block of memory with a minimum of 'size' bytes.
*
* @param size is the minimum size of the requested block in bytes.
*
* @return the pointer to allocated memory or NULL if no free memory was found.
*/
rt_weak void *rt_malloc(rt_size_t size)
{
rt_base_t level;
void *ptr;
/* Enter critical zone */
level = _heap_lock();
/* allocate memory block from system heap */
ptr = _MEM_MALLOC(size);
/* Exit critical zone */
_heap_unlock(level);
/* call 'rt_malloc' hook */
RT_OBJECT_HOOK_CALL(rt_malloc_hook, (&ptr, size));
return ptr;
}
RTM_EXPORT(rt_malloc);
/**
* @brief This function will change the size of previously allocated memory block.
*
* @param ptr is the pointer to memory allocated by rt_malloc.
*
* @param newsize is the required new size.
*
* @return the changed memory block address.
*/
rt_weak void *rt_realloc(void *ptr, rt_size_t newsize)
{
rt_base_t level;
void *nptr;
/* Entry hook */
RT_OBJECT_HOOK_CALL(rt_realloc_entry_hook, (&ptr, newsize));
/* Enter critical zone */
level = _heap_lock();
/* Change the size of previously allocated memory block */
nptr = _MEM_REALLOC(ptr, newsize);
/* Exit critical zone */
_heap_unlock(level);
/* Exit hook */
RT_OBJECT_HOOK_CALL(rt_realloc_exit_hook, (&nptr, newsize));
return nptr;
}
RTM_EXPORT(rt_realloc);
/**
* @brief This function will contiguously allocate enough space for count objects
* that are size bytes of memory each and returns a pointer to the allocated
* memory.
*
* @note The allocated memory is filled with bytes of value zero.
*
* @param count is the number of objects to allocate.
*
* @param size is the size of one object to allocate.
*
* @return pointer to allocated memory / NULL pointer if there is an error.
*/
rt_weak void *rt_calloc(rt_size_t count, rt_size_t size)
{
void *p;
/* allocate 'count' objects of size 'size' */
p = rt_malloc(count * size);
/* zero the memory */
if (p)
{
rt_memset(p, 0, count * size);
}
return p;
}
RTM_EXPORT(rt_calloc);
/**
* @brief This function will release the previously allocated memory block by
* rt_malloc. The released memory block is taken back to system heap.
*
* @param ptr the address of memory which will be released.
*/
rt_weak void rt_free(void *ptr)
{
rt_base_t level;
/* call 'rt_free' hook */
RT_OBJECT_HOOK_CALL(rt_free_hook, (&ptr));
/* NULL check */
if (ptr == RT_NULL) return;
/* Enter critical zone */
level = _heap_lock();
_MEM_FREE(ptr);
/* Exit critical zone */
_heap_unlock(level);
}
RTM_EXPORT(rt_free);
/**
* @brief This function will caculate the total memory, the used memory, and
* the max used memory.
*
* @param total is a pointer to get the total size of the memory.
*
* @param used is a pointer to get the size of memory used.
*
* @param max_used is a pointer to get the maximum memory used.
*/
rt_weak void rt_memory_info(rt_size_t *total,
rt_size_t *used,
rt_size_t *max_used)
{
rt_base_t level;
/* Enter critical zone */
level = _heap_lock();
_MEM_INFO(total, used, max_used);
/* Exit critical zone */
_heap_unlock(level);
}
RTM_EXPORT(rt_memory_info);
#if defined(RT_USING_SLAB) && defined(RT_USING_SLAB_AS_HEAP)
void *rt_page_alloc(rt_size_t npages)
{
rt_base_t level;
void *ptr;
/* Enter critical zone */
level = _heap_lock();
/* alloc page */
ptr = rt_slab_page_alloc(system_heap, npages);
/* Exit critical zone */
_heap_unlock(level);
return ptr;
}
void rt_page_free(void *addr, rt_size_t npages)
{
rt_base_t level;
/* Enter critical zone */
level = _heap_lock();
/* free page */
rt_slab_page_free(system_heap, addr, npages);
/* Exit critical zone */
_heap_unlock(level);
}
#endif
/**
* @brief This function allocates a memory block, which address is aligned to the
* specified alignment size.
*
* @param size is the allocated memory block size.
*
* @param align is the alignment size.
*
* @return The memory block address was returned successfully, otherwise it was
* returned empty RT_NULL.
*/
rt_weak void *rt_malloc_align(rt_size_t size, rt_size_t align)
{
void *ptr = RT_NULL;
void *align_ptr = RT_NULL;
int uintptr_size = 0;
rt_size_t align_size = 0;
/* sizeof pointer */
uintptr_size = sizeof(void*);
uintptr_size -= 1;
/* align the alignment size to uintptr size byte */
align = ((align + uintptr_size) & ~uintptr_size);
/* get total aligned size */
align_size = ((size + uintptr_size) & ~uintptr_size) + align;
/* allocate memory block from heap */
ptr = rt_malloc(align_size);
if (ptr != RT_NULL)
{
/* the allocated memory block is aligned */
if (((rt_uintptr_t)ptr & (align - 1)) == 0)
{
align_ptr = (void *)((rt_uintptr_t)ptr + align);
}
else
{
align_ptr = (void *)(((rt_uintptr_t)ptr + (align - 1)) & ~(align - 1));
}
/* set the pointer before alignment pointer to the real pointer */
*((rt_uintptr_t *)((rt_uintptr_t)align_ptr - sizeof(void *))) = (rt_uintptr_t)ptr;
ptr = align_ptr;
}
return ptr;
}
RTM_EXPORT(rt_malloc_align);
/**
* @brief This function release the memory block, which is allocated by
* rt_malloc_align function and address is aligned.
*
* @param ptr is the memory block pointer.
*/
rt_weak void rt_free_align(void *ptr)
{
void *real_ptr = RT_NULL;
/* NULL check */
if (ptr == RT_NULL) return;
real_ptr = (void *) * (rt_uintptr_t *)((rt_uintptr_t)ptr - sizeof(void *));
rt_free(real_ptr);
}
RTM_EXPORT(rt_free_align);
#endif /* RT_USING_HEAP */
#ifndef RT_USING_CPU_FFS
#ifdef RT_USING_TINY_FFS
const rt_uint8_t __lowest_bit_bitmap[] =
{
/* 0 - 7 */ 0, 1, 2, 27, 3, 24, 28, 32,
/* 8 - 15 */ 4, 17, 25, 31, 29, 12, 32, 14,
/* 16 - 23 */ 5, 8, 18, 32, 26, 23, 32, 16,
/* 24 - 31 */ 30, 11, 13, 7, 32, 22, 15, 10,
/* 32 - 36 */ 6, 21, 9, 20, 19
};
/**
* @brief This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
*
* @param value is the value to find the first bit set in.
*
* @return return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
int __rt_ffs(int value)
{
return __lowest_bit_bitmap[(rt_uint32_t)(value & (value - 1) ^ value) % 37];
}
#else
const rt_uint8_t __lowest_bit_bitmap[] =
{
/* 00 */ 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 10 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 20 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 30 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 40 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 50 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 60 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 70 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 80 */ 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* 90 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* A0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* B0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* C0 */ 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* D0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* E0 */ 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0,
/* F0 */ 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
/**
* @brief This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
*
* @param value is the value to find the first bit set in.
*
* @return Return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
int __rt_ffs(int value)
{
if (value == 0)
{
return 0;
}
if (value & 0xff)
{
return __lowest_bit_bitmap[value & 0xff] + 1;
}
if (value & 0xff00)
{
return __lowest_bit_bitmap[(value & 0xff00) >> 8] + 9;
}
if (value & 0xff0000)
{
return __lowest_bit_bitmap[(value & 0xff0000) >> 16] + 17;
}
return __lowest_bit_bitmap[(value & 0xff000000) >> 24] + 25;
}
#endif /* RT_USING_TINY_FFS */
#endif /* RT_USING_CPU_FFS */
#ifdef RT_DEBUGING_ASSERT
/* RT_ASSERT(EX)'s hook */
void (*rt_assert_hook)(const char *ex, const char *func, rt_size_t line);
/**
* This function will set a hook function to RT_ASSERT(EX). It will run when the expression is false.
*
* @param hook is the hook function.
*/
void rt_assert_set_hook(void (*hook)(const char *ex, const char *func, rt_size_t line))
{
rt_assert_hook = hook;
}
/**
* The RT_ASSERT function.
*
* @param ex_string is the assertion condition string.
*
* @param func is the function name when assertion.
*
* @param line is the file line number when assertion.
*/
void rt_assert_handler(const char *ex_string, const char *func, rt_size_t line)
{
volatile char dummy = 0;
if (rt_assert_hook == RT_NULL)
{
#ifdef RT_USING_MODULE
if (dlmodule_self())
{
/* close assertion module */
dlmodule_exit(-1);
}
else
#endif /*RT_USING_MODULE*/
{
rt_kprintf("(%s) assertion failed at function:%s, line number:%d \n", ex_string, func, line);
rt_backtrace();
while (dummy == 0);
}
}
else
{
rt_assert_hook(ex_string, func, line);
}
}
RTM_EXPORT(rt_assert_handler);
#endif /* RT_DEBUGING_ASSERT */
/**@}*/
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。