代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 6 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
plt.close('all')
iris = load_iris()
# A copy from Sklearn
X = iris.data
y = iris.target
feature_names = ['Sepal length, $X_1$','Sepal width, $X_2$',
'Petal length, $X_3$','Petal width, $X_4$']
# Convert X array to dataframe
X_df = pd.DataFrame(X, columns=feature_names)
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)
axs = [ax1, ax2, ax3, ax4]
for name, ax in zip(feature_names, axs):
df = X_df[name]
KDE = sm.nonparametric.KDEUnivariate(df)
KDE.fit(bw=0.5) # 0.1, 0.2, 0.4
ax.fill_between(KDE.support, KDE.density, facecolor = '#DBEEF4')
ax.plot(KDE.support, KDE.density)
ax.scatter(df,0.03*np.abs(np.random.randn(df.size)),marker = 'x')
ax.grid()
ax.autoscale(enable=True, axis='x', tight=True)
ax.autoscale(enable=True, axis='y', tight=True)
ax.set_ylim([0,1])
ax.set_xlim([0,8])
ax.set_xlabel(name)
# Cumulative distribution
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,2)
axs = [ax1, ax2, ax3, ax4]
for name, ax in zip(feature_names, axs):
df = X_df[name]
KDE = sm.nonparametric.KDEUnivariate(df)
KDE.fit(bw=0.5) # 0.1, 0.2, 0.4
ax.fill_between(KDE.support, KDE.cdf, facecolor = '#DBEEF4')
ax.plot(KDE.support, KDE.cdf)
ax.plot(KDE.support, KDE.density)
ax.grid()
ax.autoscale(enable=True, axis='x', tight=True)
ax.autoscale(enable=True, axis='y', tight=True)
ax.set_ylim([0,1])
ax.set_xlim([0,8])
ax.set_xlabel(name)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。