代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 6 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats
x = np.linspace(start = -4, stop = 4, num = 200)
# In practice, population standard deviation is rarely known
n = 6
f_x_t = stats.t.pdf(x, df = n-1)
# PDF of student t distribution
f_x_norm = stats.norm.pdf(x)
alpha = 0.05
#%% Get the critical values, two-tailed
crit_value = stats.t.ppf(q = 1-alpha/2, df = n-1)
fig, ax = plt.subplots()
plt.plot(x, f_x_t, color = "#0070C0")
plt.plot(x, f_x_norm, color = "k", linestyle = '--')
plt.fill_between(x[np.logical_and(x >= -crit_value, x <= crit_value)],
f_x_t[np.logical_and(x >= -crit_value, x <= crit_value)],
color = "#DBEEF3")
ax.axvline(x = crit_value, color = 'r', linestyle = '--')
plt.plot(crit_value, 0,marker = 'x', color = 'k', markersize = 12)
ax.axvline(x = -crit_value, color = 'r', linestyle = '--')
plt.plot(-crit_value,0,marker = 'x', color = 'k', markersize = 12)
plt.fill_between(x[x <= -crit_value], f_x_t[x <= -crit_value], color = "#FF9980")
plt.fill_between(x[x >= crit_value], f_x_t[x >= crit_value], color = "#FF9980")
plt.title("Population sigma unknown, $\\alpha = 0.05$, two-tailed")
ax.set_xlim(-4,4)
ax.set_ylim(0,0.5)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。