代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 6 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
mean_array = []
num_dices = 20 # n = 5, 10, 20
num_trials = 10000
# each trial: 10 dices and calculate mean
for i in np.arange(num_trials):
sample_i = np.random.randint(low = 1,
high = 6 + 1,
size=(num_dices))
mean_i = sample_i.mean()
mean_array.append(mean_i)
# plot the histogram of mean values at 50, 500, 5000 trials
for j in [100,1000,10000]: # m
mean_array_j = mean_array[0:j]
fig, ax = plt.subplots()
sns.histplot(mean_array_j, kde = True,
stat="density",
binrange = [1,6],
binwidth = 0.2)
mean_array_j = np.array(mean_array_j)
mu_mean_array_j = mean_array_j.mean()
ax.axvline(x = mu_mean_array_j,
color = 'r',linestyle = '--')
sigma_mean_array_j = mean_array_j.std()
ax.axvline(x = mu_mean_array_j + sigma_mean_array_j,
color = 'r',linestyle = '--')
ax.axvline(x = mu_mean_array_j - sigma_mean_array_j,
color = 'r',linestyle = '--')
plt.xlim(1,6)
plt.ylim(0,1)
plt.grid()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。