代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 5 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.datasets import load_iris
from scipy.stats import norm
import scipy
import seaborn as sns
iris = load_iris()
# A copy from Sklearn
X = iris.data
y = iris.target
feature_names = ['Sepal length, $X_1$','Sepal width, $X_2$',
'Petal length, $X_3$','Petal width, $X_4$']
x_array = np.linspace(0,8,100)
# Convert X array to dataframe
X_df = pd.DataFrame(X, columns=feature_names)
MU = X_df.mean()
MU = np.array([MU]).T
SIGMA = X_df.cov()
# random data generator
from scipy.stats import multivariate_normal
multi_norm = multivariate_normal(MU[:,0], np.array(SIGMA))
num_rand = 200
X_rand = multi_norm.rvs(num_rand)
X_rand_df = pd.DataFrame(X_rand, columns = X_df.columns)
# without class labels
g = sns.pairplot(X_rand_df)
g.map_upper(sns.scatterplot, color = 'b')
g.map_lower(sns.kdeplot, levels=8, fill=True, cmap="Blues_d")
g.map_diag(sns.distplot, kde=False, color = 'b')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。