代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 5 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
mu_z = [0, 0]
SIGMA_z = [[1, 0], [0, 1]]
# diagonal covariance
z1, z2 = np.random.multivariate_normal(mu_z, SIGMA_z, 500).T
Z = np.matrix([z1,z2]).T
# IID standard normal
Z_df = pd.DataFrame(data=Z, columns=["Z1", "Z2"])
g = sns.jointplot(data = Z_df, x='Z1', y='Z2',
alpha = 0.5, color = 'b',
xlim = (-4,8), ylim = (-4,8))
g.plot_joint(sns.kdeplot, color="g", zorder=0, fill = False)
g.plot_marginals(sns.rugplot, color="k")
g.ax_joint.axvline(x=Z_df.mean()['Z1'], color = 'r', linestyle = '--')
g.ax_joint.axhline(y=Z_df.mean()['Z2'], color = 'r', linestyle = '--')
#%% Use Cholesky decomposition
# generate multivariate normal random numbers
E_X = [2, 4]
SIGMA_X = [[4, 2], [2, 2]]
# x1, x2 = np.random.multivariate_normal(E_x, SIGMA_x, 500).T
L = np.linalg.cholesky(SIGMA_X)
R = L.T
X_Chol = Z@R + np.matrix([E_X])
X_Chol_df = pd.DataFrame(data=X_Chol, columns=["X1", "X2"])
g = sns.jointplot(data = X_Chol_df, x='X1', y='X2',
alpha = 0.5, color = 'b',
xlim = (-4,8), ylim = (-4,8))
g.plot_joint(sns.kdeplot, color="g", zorder=0, fill = False)
g.plot_marginals(sns.rugplot, color="k")
g.ax_joint.axvline(x=X_Chol_df.mean()['X1'], color = 'r', linestyle = '--')
g.ax_joint.axhline(y=X_Chol_df.mean()['X2'], color = 'r', linestyle = '--')
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。