代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 5 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import streamlit as st
from scipy.stats import beta
import matplotlib.pyplot as plt
import numpy as np
def uni_normal_pdf(x,mu,sigma):
coeff = 1/np.sqrt(2*np.pi)/sigma
z = (x - mu)/sigma
f_x = coeff*np.exp(-1/2*z**2)
return f_x
x_array = np.linspace(-5,5,200)
with st.sidebar:
mu_input = st.slider('mu', min_value=-5.0, max_value=5.0, value=0.0, step=0.2)
sigma_input = st.slider('sigma', min_value=0.0, max_value=4.0, value=1.0, step=0.1)
st.write('Univariate Gaussian distribution PDF')
st.latex(r'''{\displaystyle f(x)={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {1}{2}}\left({\frac {x-\mu }{\sigma }}\right)^{2}}}''')
pdf_array = uni_normal_pdf(x_array, mu_input, sigma_input)
fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(x_array, pdf_array,
'b', lw=1)
ax.axvline (x = mu_input, c = 'r', ls = '--')
ax.axvline (x = mu_input + sigma_input, c = 'r', ls = '--')
ax.axvline (x = mu_input - sigma_input, c = 'r', ls = '--')
# standard normal
ax.plot(x_array, uni_normal_pdf(x_array, 0, 1),
c = [0.8, 0.8, 0.8], lw=1)
ax.axvline (x = 0, c = [0.8, 0.8, 0.8], ls = '--')
ax.axvline (x = 0 + 1, c = [0.8, 0.8, 0.8], ls = '--')
ax.axvline (x = 0 - 1, c = [0.8, 0.8, 0.8], ls = '--')
ax.set_xlim(-5,5)
ax.set_ylim(0,1)
ax.spines.right.set_visible(False)
ax.spines.top.set_visible(False)
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
ax.tick_params(axis="x", direction='in')
ax.tick_params(axis="y", direction='in')
st.pyplot(fig)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。