代码拉取完成,页面将自动刷新
同步操作将从 Higkoo/Book5_Essentials-of-Probability-and-Statistics 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
###############
# Authored by Weisheng Jiang
# Book 5 | From Basic Arithmetic to Machine Learning
# Published and copyrighted by Tsinghua University Press
# Beijing, China, 2022
###############
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm # Colormaps
from scipy.stats import norm
# varying mu
X = np.arange(-5,5,0.05)
mu = np.arange(-2,2,0.2)
XX, MM = np.meshgrid(X, mu)
sigma = 1
F_x_varying_mu = norm.cdf(XX, loc=MM, scale=sigma)
# surface projected along Y to X-Z plane
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_wireframe(XX, MM, F_x_varying_mu, rstride=1, cstride=0,
color = [0.3,0.3,0.3],
linewidth = 0.25)
ax.contour(XX, MM, F_x_varying_mu,
levels = 20, zdir='y', \
offset=mu.max(), cmap=cm.RdYlBu_r)
ax.set_xlabel('$X$')
ax.set_ylabel('$\mu$')
ax.set_zlabel('$F_{X}(x)$')
ax.xaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.yaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.zaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.set_xlim(-5, 5)
ax.set_ylim(-2, 2)
ax.view_init(azim=-120, elev=30)
plt.tight_layout()
plt.show()
fig, ax = plt.subplots()
colors = plt.cm.RdYlBu_r(np.linspace(0,1,len(mu)))
for i in np.linspace(1,len(mu),len(mu)):
plt.plot(X,F_x_varying_mu[int(i)-1,:],
color = colors[int(i)-1])
plt.axhline(y = 0.5, color = 'k', linestyle = '--')
plt.axhline(y = 1, color = 'k', linestyle = '--')
plt.xlabel('X')
plt.ylabel('$F_{X}(x)$')
ax.set_xlim(-5, 5)
ax.set_ylim(0, F_x_varying_mu.max())
#%% Varying sigma
X = np.arange(-5,5,0.05)
sigma = np.arange(0.5,3,0.1)
XX, SS = np.meshgrid(X, sigma)
mu = 0
F_x_varying_sig = norm.cdf(XX, loc=mu, scale=SS)
# F_x_varying_sig = np.cumsum(f_x_varying_sig,axis = 1)*0.05
# surface projected along Y to X-Z plane
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_wireframe(XX, SS, F_x_varying_sig, rstride=1, cstride=0,
color = [0.3,0.3,0.3],
linewidth = 0.25)
ax.contour(XX, SS, F_x_varying_sig,
levels = 20, zdir='y', \
offset=sigma.max(), cmap=cm.RdYlBu_r)
ax.set_xlabel('$X$')
ax.set_ylabel('$\sigma$')
ax.set_zlabel('$F_{X}(x)$')
ax.xaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.yaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.zaxis._axinfo["grid"].update({"linewidth":0.25, "linestyle" : ":"})
ax.set_xlim(-5, 5)
ax.set_ylim(0.5,3)
ax.view_init(azim=-120, elev=30)
plt.tight_layout()
plt.show()
fig, ax = plt.subplots()
colors = plt.cm.RdYlBu_r(np.linspace(0,1,len(sigma)))
for i in np.linspace(1,len(sigma),len(sigma)):
plt.plot(X,F_x_varying_sig[int(i)-1,:],
color = colors[int(i)-1])
plt.axhline(y = 0.5, color = 'k', linestyle = '--')
plt.axhline(y = 1, color = 'k', linestyle = '--')
plt.xlabel('X')
plt.ylabel('$F_{X}(x)$')
ax.set_xlim(-5, 5)
ax.set_ylim(0, F_x_varying_mu.max())
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。