2 Star 47 Fork 11

cold/基于深度学习的车牌识别系统

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
imgGUI.py 9.51 KB
一键复制 编辑 原始数据 按行查看 历史
cold 提交于 2021-12-31 15:18 . first
import tkinter
import os
from tkinter import *
from tkinter.filedialog import askopenfilename
import cv2
import numpy as np
from PIL import Image, ImageTk
from tensorflow import keras
from CNN import cnn_predict
from Unet import unet_predict
from a.a.vidGUI import VidWindow
from core import locate_and_correct
from imgtovid import images_to_video
class ImgWindow:
def __init__(self, win, ww, wh):
self.win = win
self.ww = ww
self.wh = wh
self.win.title("车牌识别系统--图像处理模块")
self.win.geometry("%dx%d+%d+%d" % (ww, wh, 200, 50))
self.img_src_path = None
self.can_src = Canvas(self.win, width=512, height=512, bg='white', relief='solid', borderwidth=1)
self.can_src.place(x=50, y=35)
self.textlabe = Label(text="图像处理", fg="white", bg='black', font=("微软雅黑", 18))
self.textlabe.place(x=750, y=15)
self.can_lic1 = Canvas(self.win, width=245, height=85, bg='white', relief='solid', borderwidth=1)
self.can_lic1.place(x=670, y=60)
self.can_pred1 = Canvas(self.win, width=245, height=65, bg='white', relief='solid', borderwidth=1)
self.can_pred1.place(x=670, y=170)
self.can_lic2 = Canvas(self.win, width=245, height=85, bg='white', relief='solid', borderwidth=1)
self.can_lic2.place(x=670, y=275)
self.can_pred2 = Canvas(self.win, width=245, height=65, bg='white', relief='solid', borderwidth=1)
self.can_pred2.place(x=670, y=385)
self.button1 = Button(self.win, text='选择文件', width=10, height=1, command=self.load_show_img)
self.button1.place(x=600, y=520)
self.button2 = Button(self.win, text='车牌定位', width=10, height=1, command=self.display)
self.button2.place(x=700, y=520)
self.button3 = Button(self.win, text='识别车牌', width=10, height=1, command=self.display2)
self.button3.place(x=800, y=520)
self.button4 = Button(self.win, text='清空所有', width=10, height=1, command=self.clear)
self.button4.place(x=900, y=520)
self.button5 = Button(self.win, text='视频处理', width=8, height=1, command=self.back, bg="DimGray")
self.button5.place(x=670, y=20)
self.unet = keras.models.load_model('unet.h5')
self.cnn = keras.models.load_model('cnn.h5')
print('正在启动中,请稍等...')
cnn_predict(self.cnn, [np.zeros((80, 240, 3))])
print("已启动,开始识别吧!")
def back(self):
self.win.destroy()
win2 = Tk()
ww = 1000
wh = 600
img_gif = tkinter.PhotoImage(file="3.gif")
label_img = tkinter.Label(win2, image=img_gif, width="1000", height="600")
label_img.place(x=0, y=0)
VidWindow(win2, ww, wh)
screenWidth, screenHeight = win2.maxsize()
geometryParam = '%dx%d+%d+%d' % (
ww, wh, (screenWidth - ww) / 2, (screenHeight - wh) / 2)
win2.geometry(geometryParam)
win2.mainloop()
def load_show_img(self):
self.clear()
sv = StringVar()
sv.set(askopenfilename())
self.img_src_path = Entry(self.win, state='readonly', text=sv).get()
#print(self.img_src_path)
img_open = Image.open(self.img_src_path)
if img_open.size[0] * img_open.size[1] > 240 * 80:
img_open = img_open.resize((512, 512), Image.ANTIALIAS) #图片 512x512
self.img_Tk = ImageTk.PhotoImage(img_open)
self.can_src.create_image(258, 258, image=self.img_Tk, anchor='center')
def display(self):
if self.img_src_path == None:
self.can_pred1.create_text(32, 15, text='请选择图片', anchor='nw', font=('黑体', 28))
else:
img_src = cv2.imdecode(np.fromfile(self.img_src_path, dtype=np.uint8), -1)
h, w = img_src.shape[0], img_src.shape[1]
if h * w <= 240 * 80 and 2 <= w / h <= 5: # 整个图片就是一张车牌无需定位
lic = cv2.resize(img_src, dsize=(240, 80), interpolation=cv2.INTER_AREA)[:, :, :3] # resize(240,80)
img_src_copy, Lic_img = img_src, [lic]
else:
img_src, img_mask = unet_predict(self.unet, self.img_src_path)
img_src_copy, Lic_img = locate_and_correct(img_src, img_mask)
#cv2.imwrite('E:/pic3.jpeg',img_src_copy)
Lic_pred = cnn_predict(self.cnn, Lic_img) # 利用cnn进行车牌的识别预测,Lic_pred中存的是元祖(车牌图片,识别结果)
if Lic_pred:
img = Image.fromarray(img_src_copy[:, :, ::-1]) # img_src_copy[:, :, ::-1]将BGR转为RGB
self.img_Tk = ImageTk.PhotoImage(img)
self.can_src.delete('all')
self.can_src.create_image(258, 258, image=self.img_Tk,
anchor='center')
for i, lic_pred in enumerate(Lic_pred):
if i == 0:
self.lic_Tk1 = ImageTk.PhotoImage(Image.fromarray(lic_pred[0][:, :, ::-1]))
self.can_lic1.create_image(5, 5, image=self.lic_Tk1, anchor='nw')
elif i == 1:
self.lic_Tk2 = ImageTk.PhotoImage(Image.fromarray(lic_pred[0][:, :, ::-1]))
self.can_lic2.create_image(5, 5, image=self.lic_Tk2, anchor='nw')
else:
self.can_pred1.create_text(47, 15, text='未能识别', anchor='nw', font=('黑体', 27))
def display2(self):
if self.img_src_path == None:
self.can_pred1.create_text(32, 15, text='请选择图片', anchor='nw', font=('黑体', 28))
else:
img_src = cv2.imdecode(np.fromfile(self.img_src_path, dtype=np.uint8), -1)
h, w = img_src.shape[0], img_src.shape[1]
if h * w <= 240 * 80 and 2 <= w / h <= 5:
lic = cv2.resize(img_src, dsize=(240, 80), interpolation=cv2.INTER_AREA)[:, :, :3]
img_src_copy, Lic_img = img_src, [lic]
else:
img_src, img_mask = unet_predict(self.unet, self.img_src_path)
img_src_copy, Lic_img = locate_and_correct(img_src, img_mask)
#cv2.imwrite('E:/pic3.jpeg',img_src_copy)
Lic_pred = cnn_predict(self.cnn, Lic_img)
if Lic_pred:
for i, lic_pred in enumerate(Lic_pred):
if i == 0:
self.lic_Tk1 = ImageTk.PhotoImage(Image.fromarray(lic_pred[0][:, :, ::-1]))
self.can_lic1.create_image(5, 5, image=self.lic_Tk1, anchor='nw')
self.can_pred1.create_text(35, 15, text=lic_pred[1], anchor='nw', font=('黑体', 28))
elif i == 1:
self.lic_Tk2 = ImageTk.PhotoImage(Image.fromarray(lic_pred[0][:, :, ::-1]))
self.can_lic2.create_image(5, 5, image=self.lic_Tk2, anchor='nw')
self.can_pred2.create_text(40, 15, text=lic_pred[1], anchor='nw', font=('黑体', 28))
else:
self.can_pred1.create_text(47, 15, text='未能识别', anchor='nw', font=('黑体', 27))
def clear(self):
self.can_src.delete('all')
self.can_lic1.delete('all')
self.can_lic2.delete('all')
self.can_pred1.delete('all')
self.can_pred2.delete('all')
self.img_src_path = None
if __name__ == '__main__':
win = Tk()
ww = 1000
wh = 600
img_gif = tkinter.PhotoImage(file="2.gif")
label_img = tkinter.Label(win, image=img_gif, width="1000", height="600")
label_img.place(x=0, y=0)
ImgWindow(win, ww, wh)
screenWidth, screenHeight = win.maxsize()
geometryParam = '%dx%d+%d+%d' % (
ww, wh, (screenWidth - ww) / 2, (screenHeight - wh) / 2)
win.geometry(geometryParam)
win.mainloop()
'''
root = tkinter.Tk()
root.title('车牌识别系统--图像处理')
root.resizable(False, False)
windowWidth = 1000
windowHeight = 600
screenWidth, screenHeight = root.maxsize()
geometryParam = '%dx%d+%d+%d' % (
windowWidth, windowHeight, (screenWidth - windowWidth) / 2, (screenHeight - windowHeight) / 2)
root.geometry(geometryParam)
root.wm_attributes('-topmost', 1) # 窗口置顶
class imgGUI:
def __init__(self):
img_gif = tkinter.PhotoImage(file="2.gif")
label_img = tkinter.Label(root, image=img_gif, width = "1000",height = "600")
label_img.place(x=0, y=0)
can_lic1 = tkinter.Canvas(root, width=512, height=512, bg='white', relief='solid', borderwidth=1)
can_lic1.place(x=50, y=35)
textlabe = tkinter.Label(text = "图像处理", fg="white",bg = 'black', font=("微软雅黑", 18))
textlabe.place(x=750, y=15)
can_lic1 = tkinter.Canvas(root, width=245, height=85, bg='white', relief='solid', borderwidth=1)
can_lic1.place(x=670, y=60)
can_pred1 = tkinter.Canvas(root, width=245, height=65, bg='white', relief='solid', borderwidth=1)
can_pred1.place(x=670, y=170)
can_lic2 = tkinter.Canvas(root, width=245, height=85, bg='white', relief='solid', borderwidth=1)
can_lic2.place(x=670, y=275)
can_pred2 = tkinter.Canvas(root, width=245, height=65, bg='white', relief='solid', borderwidth=1)
can_pred2.place(x=670, y=385)
button1 = tkinter.Button(root, text='选择文件', width=10, height=1,bg = "DarkGray")
button1.place(x=650, y=520)
button2 = tkinter.Button(root, text='识别车牌', width=10, height=1,bg = "DarkGray")
button2.place(x=750, y=520)
button3 = tkinter.Button(root, text='清空所有', width=10, height=1,bg = "DarkGray")
button3.place(x=850, y=520)
root.mainloop()
'''
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/feeling-cool/VLPR.git
git@gitee.com:feeling-cool/VLPR.git
feeling-cool
VLPR
基于深度学习的车牌识别系统
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385