1 Star 1 Fork 98

fb1103/YOLO_v3_tensorflow

forked from 风酒/YOLO_v3_tensorflow 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
克隆/下载
get_kmeans.py 4.85 KB
一键复制 编辑 原始数据 按行查看 历史
风酒 提交于 2019-09-14 16:25 . train args
# coding: utf-8
# This script is modified from https://github.com/lars76/kmeans-anchor-boxes
from __future__ import division, print_function
import numpy as np
def iou(box, clusters):
"""
Calculates the Intersection over Union (IoU) between a box and k clusters.
param:
box: tuple or array, shifted to the origin (i. e. width and height)
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
numpy array of shape (k, 0) where k is the number of clusters
"""
x = np.minimum(clusters[:, 0], box[0])
y = np.minimum(clusters[:, 1], box[1])
if np.count_nonzero(x == 0) > 0 or np.count_nonzero(y == 0) > 0:
raise ValueError("Box has no area")
intersection = x * y
box_area = box[0] * box[1]
cluster_area = clusters[:, 0] * clusters[:, 1]
iou_ = np.true_divide(intersection, box_area + cluster_area - intersection + 1e-10)
# iou_ = intersection / (box_area + cluster_area - intersection + 1e-10)
return iou_
def avg_iou(boxes, clusters):
"""
Calculates the average Intersection over Union (IoU) between a numpy array of boxes and k clusters.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
clusters: numpy array of shape (k, 2) where k is the number of clusters
return:
average IoU as a single float
"""
return np.mean([np.max(iou(boxes[i], clusters)) for i in range(boxes.shape[0])])
def translate_boxes(boxes):
"""
Translates all the boxes to the origin.
param:
boxes: numpy array of shape (r, 4)
return:
numpy array of shape (r, 2)
"""
new_boxes = boxes.copy()
for row in range(new_boxes.shape[0]):
new_boxes[row][2] = np.abs(new_boxes[row][2] - new_boxes[row][0])
new_boxes[row][3] = np.abs(new_boxes[row][3] - new_boxes[row][1])
return np.delete(new_boxes, [0, 1], axis=1)
def kmeans(boxes, k, dist=np.median):
"""
Calculates k-means clustering with the Intersection over Union (IoU) metric.
param:
boxes: numpy array of shape (r, 2), where r is the number of rows
k: number of clusters
dist: distance function
return:
numpy array of shape (k, 2)
"""
rows = boxes.shape[0]
distances = np.empty((rows, k))
last_clusters = np.zeros((rows,))
np.random.seed()
# the Forgy method will fail if the whole array contains the same rows
clusters = boxes[np.random.choice(rows, k, replace=False)]
while True:
for row in range(rows):
distances[row] = 1 - iou(boxes[row], clusters)
nearest_clusters = np.argmin(distances, axis=1)
if (last_clusters == nearest_clusters).all():
break
for cluster in range(k):
clusters[cluster] = dist(boxes[nearest_clusters == cluster], axis=0)
last_clusters = nearest_clusters
return clusters
def parse_anno(annotation_path, target_size=None):
anno = open(annotation_path, 'r')
result = []
for line in anno:
s = line.strip().split(' ')
img_w = int(s[2])
img_h = int(s[3])
s = s[4:]
box_cnt = len(s) // 5
for i in range(box_cnt):
x_min, y_min, x_max, y_max = float(s[i*5+1]), float(s[i*5+2]), float(s[i*5+3]), float(s[i*5+4])
width = x_max - x_min
height = y_max - y_min
assert width > 0
assert height > 0
# use letterbox resize, i.e. keep the original aspect ratio
# get k-means anchors on the resized target image size
if target_size is not None:
resize_ratio = min(target_size[0] / img_w, target_size[1] / img_h)
width *= resize_ratio
height *= resize_ratio
result.append([width, height])
# get k-means anchors on the original image size
else:
result.append([width, height])
result = np.asarray(result)
return result
def get_kmeans(anno, cluster_num=9):
anchors = kmeans(anno, cluster_num)
ave_iou = avg_iou(anno, anchors)
anchors = anchors.astype('int').tolist()
anchors = sorted(anchors, key=lambda x: x[0] * x[1])
return anchors, ave_iou
if __name__ == '__main__':
# target resize format: [width, height]
# if target_resize is speficied, the anchors are on the resized image scale
# if target_resize is set to None, the anchors are on the original image scale
target_size = [416, 416]
annotation_path = "train.txt"
anno_result = parse_anno(annotation_path, target_size=target_size)
anchors, ave_iou = get_kmeans(anno_result, 9)
anchor_string = ''
for anchor in anchors:
anchor_string += '{},{}, '.format(anchor[0], anchor[1])
anchor_string = anchor_string[:-2]
print('anchors are:')
print(anchor_string)
print('the average iou is:')
print(ave_iou)
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/fb1103/YOLO_v3_tensorflow.git
git@gitee.com:fb1103/YOLO_v3_tensorflow.git
fb1103
YOLO_v3_tensorflow
YOLO_v3_tensorflow
master

搜索帮助