AI模型训练平台是一个基于 Python Flask 的 Web 多模态大模型 + PT 模型的双重自动标注平台,提供数据增强闭环:"小数据→简单模型→辅助标注→大数据→精确模型" 的完整循环
专门为 YOLOv8/11 目标检测模型的全生命周期管理而设计,旨在为 AI 开发者和研究人员提供一个完整的、易用的目标检测模型训练解决方案。
Myolotrain是一个可视化管理yolo视觉模型训练的系统,为计算机视觉任务提供了直观的图形界面。该平台集成了在线标注、数据集管理、模型管理、训练管理和目标检测功能,支持windows、linux、docker等多种部署方式,使用户能够轻松地训练和部署 YOLOv8 模型,支持CPU和GPU,使用tensorboard实时查看训练进度,具备数据集自动分割功能。
基于spring boot + maven + opencv 实现的图像深度学习Demo项目,包含车牌识别、人脸识别、证件识别等功能,贯穿样本处理、模型训练、图像处理、对象检测、对象识别等技术点
基于yolov8框架,使用C++实现的跨平台目标识别系统,支持windows、linux(Ubuntu或centos)跨平台编译及部署。
国内首款纯java算法内核开源社区级人脸识别项目,项目基于EasyAi,人脸识别服务!
基于PaddleOCR重构,并且脱离PaddlePaddle深度学习训练框架的轻量级OCR,推理速度超快 —— A lightweight OCR system based on PaddleOCR, decoupled from the PaddlePaddle deep learning training framework, with ultra-fast inference speed.
YOLOv11 🚀 Ultralytics
同步更新官方最新版 YOLOv11
FACE-UI 基于前后端分离Web端项目,主要实现了网页版的人脸登录,通过调取前端摄像头拍照,传入后台进行跟数据库人脸库的相似度比对,技术的用点:Springboot,Mysql,JWT,VUE 2.X 等等技术实现,主要功能点:人脸列表CRUD,日志列表CRUD,基于自建人脸库通过base64编码方式存储人脸图片,通过调用腾讯云人脸对比API场景实现,人脸登录,网页版人脸登录,Web端人脸登录
开源易用的中文离线OCR,识别率媲美大厂,并且提供了易用的web页面及web的接口,方便人类日常工作使用或者其他程序来调用~