代码拉取完成,页面将自动刷新
同步操作将从 PaddlePaddle/PaddleOCR 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import importlib
__dir__ = os.path.dirname(__file__)
from paddle.utils import try_import
sys.path.append(os.path.join(__dir__, ""))
import cv2
from copy import deepcopy
import logging
import numpy as np
from pathlib import Path
import base64
from io import BytesIO
import pprint
from PIL import Image
def _import_file(module_name, file_path, make_importable=False):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
if make_importable:
sys.modules[module_name] = module
return module
tools = _import_file(
"tools", os.path.join(__dir__, "tools/__init__.py"), make_importable=True
)
ppocr = importlib.import_module("ppocr", "paddleocr")
ppstructure = importlib.import_module("ppstructure", "paddleocr")
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import (
check_and_read,
get_image_file_list,
alpha_to_color,
binarize_img,
)
from ppocr.utils.network import (
maybe_download,
download_with_progressbar,
is_link,
confirm_model_dir_url,
)
from tools.infer import predict_system
from tools.infer.utility import draw_ocr, str2bool, check_gpu
from ppstructure.utility import init_args, draw_structure_result
from ppstructure.predict_system import StructureSystem, save_structure_res, to_excel
from ppstructure.recovery.recovery_to_doc import sorted_layout_boxes, convert_info_docx
logger = get_logger()
__all__ = [
"PaddleOCR",
"PPStructure",
"draw_ocr",
"draw_structure_result",
"save_structure_res",
"download_with_progressbar",
"to_excel",
"sorted_layout_boxes",
"convert_info_docx",
]
SUPPORT_DET_MODEL = ["DB"]
SUPPORT_REC_MODEL = ["CRNN", "SVTR_LCNet"]
BASE_DIR = os.path.expanduser("~/.paddleocr/")
DEFAULT_OCR_MODEL_VERSION = "PP-OCRv4"
SUPPORT_OCR_MODEL_VERSION = ["PP-OCR", "PP-OCRv2", "PP-OCRv3", "PP-OCRv4"]
DEFAULT_STRUCTURE_MODEL_VERSION = "PP-StructureV2"
SUPPORT_STRUCTURE_MODEL_VERSION = ["PP-Structure", "PP-StructureV2"]
MODEL_URLS = {
"OCR": {
"PP-OCRv4": {
"det": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_det_infer.tar",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
},
"ml": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
},
},
"rec": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/chinese/ch_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/english/en_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/en_dict.txt",
},
"korean": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/korean_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
},
"japan": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/japan_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
},
"chinese_cht": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
},
"ta": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ta_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
},
"te": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/te_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/te_dict.txt",
},
"ka": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/ka_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
},
"latin": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
},
"arabic": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/arabic_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
},
"cyrillic": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
},
"devanagari": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv4/multilingual/devanagari_PP-OCRv4_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
},
},
"cls": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
}
},
},
"PP-OCRv3": {
"det": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar",
},
"ml": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/Multilingual_PP-OCRv3_det_infer.tar"
},
},
"rec": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/en_dict.txt",
},
"korean": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/korean_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
},
"japan": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/japan_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
},
"chinese_cht": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/chinese_cht_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
},
"ta": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
},
"te": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/te_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/te_dict.txt",
},
"ka": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
},
"latin": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
},
"arabic": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
},
"cyrillic": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
},
"devanagari": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
},
},
"cls": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
}
},
},
"PP-OCRv2": {
"det": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar",
},
},
"rec": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar",
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
}
},
"cls": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
}
},
},
"PP-OCR": {
"det": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_ppocr_mobile_v2.0_det_infer.tar",
},
"structure": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar"
},
},
"rec": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/ppocr_keys_v1.txt",
},
"en": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/en_dict.txt",
},
"french": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/french_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/french_dict.txt",
},
"german": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/german_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/german_dict.txt",
},
"korean": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/korean_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/korean_dict.txt",
},
"japan": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/japan_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/japan_dict.txt",
},
"chinese_cht": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/chinese_cht_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/chinese_cht_dict.txt",
},
"ta": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ta_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ta_dict.txt",
},
"te": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/te_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/te_dict.txt",
},
"ka": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/ka_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/ka_dict.txt",
},
"latin": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/latin_ppocr_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/latin_dict.txt",
},
"arabic": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/arabic_ppocr_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/arabic_dict.txt",
},
"cyrillic": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/cyrillic_ppocr_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/cyrillic_dict.txt",
},
"devanagari": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/devanagari_ppocr_mobile_v2.0_rec_infer.tar",
"dict_path": "./ppocr/utils/dict/devanagari_dict.txt",
},
"structure": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar",
"dict_path": "ppocr/utils/dict/table_dict.txt",
},
},
"cls": {
"ch": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar",
}
},
},
},
"STRUCTURE": {
"PP-Structure": {
"table": {
"en": {
"url": "https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar",
"dict_path": "ppocr/utils/dict/table_structure_dict.txt",
}
}
},
"PP-StructureV2": {
"table": {
"en": {
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/en_ppstructure_mobile_v2.0_SLANet_infer.tar",
"dict_path": "ppocr/utils/dict/table_structure_dict.txt",
},
"ch": {
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar",
"dict_path": "ppocr/utils/dict/table_structure_dict_ch.txt",
},
},
"layout": {
"en": {
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_infer.tar",
"dict_path": "ppocr/utils/dict/layout_dict/layout_publaynet_dict.txt",
},
"ch": {
"url": "https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_fgd_layout_cdla_infer.tar",
"dict_path": "ppocr/utils/dict/layout_dict/layout_cdla_dict.txt",
},
},
},
},
}
def parse_args(mMain=True):
import argparse
parser = init_args()
parser.add_help = mMain
parser.add_argument("--lang", type=str, default="ch")
parser.add_argument("--det", type=str2bool, default=True)
parser.add_argument("--rec", type=str2bool, default=True)
parser.add_argument("--type", type=str, default="ocr")
parser.add_argument("--savefile", type=str2bool, default=False)
parser.add_argument(
"--ocr_version",
type=str,
choices=SUPPORT_OCR_MODEL_VERSION,
default="PP-OCRv4",
help="OCR Model version, the current model support list is as follows: "
"1. PP-OCRv4/v3 Support Chinese and English detection and recognition model, and direction classifier model"
"2. PP-OCRv2 Support Chinese detection and recognition model. "
"3. PP-OCR support Chinese detection, recognition and direction classifier and multilingual recognition model.",
)
parser.add_argument(
"--structure_version",
type=str,
choices=SUPPORT_STRUCTURE_MODEL_VERSION,
default="PP-StructureV2",
help="Model version, the current model support list is as follows:"
" 1. PP-Structure Support en table structure model."
" 2. PP-StructureV2 Support ch and en table structure model.",
)
for action in parser._actions:
if action.dest in [
"rec_char_dict_path",
"table_char_dict_path",
"layout_dict_path",
]:
action.default = None
if mMain:
return parser.parse_args()
else:
inference_args_dict = {}
for action in parser._actions:
inference_args_dict[action.dest] = action.default
return argparse.Namespace(**inference_args_dict)
def parse_lang(lang):
latin_lang = [
"af",
"az",
"bs",
"cs",
"cy",
"da",
"de",
"es",
"et",
"fr",
"ga",
"hr",
"hu",
"id",
"is",
"it",
"ku",
"la",
"lt",
"lv",
"mi",
"ms",
"mt",
"nl",
"no",
"oc",
"pi",
"pl",
"pt",
"ro",
"rs_latin",
"sk",
"sl",
"sq",
"sv",
"sw",
"tl",
"tr",
"uz",
"vi",
"french",
"german",
]
arabic_lang = ["ar", "fa", "ug", "ur"]
cyrillic_lang = [
"ru",
"rs_cyrillic",
"be",
"bg",
"uk",
"mn",
"abq",
"ady",
"kbd",
"ava",
"dar",
"inh",
"che",
"lbe",
"lez",
"tab",
]
devanagari_lang = [
"hi",
"mr",
"ne",
"bh",
"mai",
"ang",
"bho",
"mah",
"sck",
"new",
"gom",
"sa",
"bgc",
]
if lang in latin_lang:
lang = "latin"
elif lang in arabic_lang:
lang = "arabic"
elif lang in cyrillic_lang:
lang = "cyrillic"
elif lang in devanagari_lang:
lang = "devanagari"
assert (
lang in MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"]
), "param lang must in {}, but got {}".format(
MODEL_URLS["OCR"][DEFAULT_OCR_MODEL_VERSION]["rec"].keys(), lang
)
if lang == "ch":
det_lang = "ch"
elif lang == "structure":
det_lang = "structure"
elif lang in ["en", "latin"]:
det_lang = "en"
else:
det_lang = "ml"
return lang, det_lang
def get_model_config(type, version, model_type, lang):
if type == "OCR":
DEFAULT_MODEL_VERSION = DEFAULT_OCR_MODEL_VERSION
elif type == "STRUCTURE":
DEFAULT_MODEL_VERSION = DEFAULT_STRUCTURE_MODEL_VERSION
else:
raise NotImplementedError
model_urls = MODEL_URLS[type]
if version not in model_urls:
version = DEFAULT_MODEL_VERSION
if model_type not in model_urls[version]:
if model_type in model_urls[DEFAULT_MODEL_VERSION]:
version = DEFAULT_MODEL_VERSION
else:
logger.error(
"{} models is not support, we only support {}".format(
model_type, model_urls[DEFAULT_MODEL_VERSION].keys()
)
)
sys.exit(-1)
if lang not in model_urls[version][model_type]:
if lang in model_urls[DEFAULT_MODEL_VERSION][model_type]:
version = DEFAULT_MODEL_VERSION
else:
logger.error(
"lang {} is not support, we only support {} for {} models".format(
lang,
model_urls[DEFAULT_MODEL_VERSION][model_type].keys(),
model_type,
)
)
sys.exit(-1)
return model_urls[version][model_type][lang]
def img_decode(content: bytes):
np_arr = np.frombuffer(content, dtype=np.uint8)
return cv2.imdecode(np_arr, cv2.IMREAD_UNCHANGED)
def check_img(img, alpha_color=(255, 255, 255)):
"""
Check the image data. If it is another type of image file, try to decode it into a numpy array.
The inference network requires three-channel images, So the following channel conversions are done
single channel image: Gray to RGB R←Y,G←Y,B←Y
four channel image: alpha_to_color
args:
img: image data
file format: jpg, png and other image formats that opencv can decode, as well as gif and pdf formats
storage type: binary image, net image file, local image file
alpha_color: Background color in images in RGBA format
return: numpy.array (h, w, 3) or list (p, h, w, 3) (p: page of pdf), boolean, boolean
"""
flag_gif, flag_pdf = False, False
if isinstance(img, bytes):
img = img_decode(img)
if isinstance(img, str):
# download net image
if is_link(img):
download_with_progressbar(img, "tmp.jpg")
img = "tmp.jpg"
image_file = img
img, flag_gif, flag_pdf = check_and_read(image_file)
if not flag_gif and not flag_pdf:
with open(image_file, "rb") as f:
img_str = f.read()
img = img_decode(img_str)
if img is None:
try:
buf = BytesIO()
image = BytesIO(img_str)
im = Image.open(image)
rgb = im.convert("RGB")
rgb.save(buf, "jpeg")
buf.seek(0)
image_bytes = buf.read()
data_base64 = str(base64.b64encode(image_bytes), encoding="utf-8")
image_decode = base64.b64decode(data_base64)
img_array = np.frombuffer(image_decode, np.uint8)
img = cv2.imdecode(img_array, cv2.IMREAD_COLOR)
except:
logger.error("error in loading image:{}".format(image_file))
return None, flag_gif, flag_pdf
if img is None:
logger.error("error in loading image:{}".format(image_file))
return None, flag_gif, flag_pdf
# single channel image array.shape:h,w
if isinstance(img, np.ndarray) and len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
# four channel image array.shape:h,w,c
if isinstance(img, np.ndarray) and len(img.shape) == 3 and img.shape[2] == 4:
img = alpha_to_color(img, alpha_color)
return img, flag_gif, flag_pdf
class PaddleOCR(predict_system.TextSystem):
def __init__(self, **kwargs):
"""
paddleocr package
args:
**kwargs: other params show in paddleocr --help
"""
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
assert (
params.ocr_version in SUPPORT_OCR_MODEL_VERSION
), "ocr_version must in {}, but get {}".format(
SUPPORT_OCR_MODEL_VERSION, params.ocr_version
)
params.use_gpu = check_gpu(params.use_gpu)
if not params.show_log:
logger.setLevel(logging.INFO)
self.use_angle_cls = params.use_angle_cls
lang, det_lang = parse_lang(params.lang)
# init model dir
det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
params.det_model_dir, det_url = confirm_model_dir_url(
params.det_model_dir,
os.path.join(BASE_DIR, "whl", "det", det_lang),
det_model_config["url"],
)
rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
params.rec_model_dir, rec_url = confirm_model_dir_url(
params.rec_model_dir,
os.path.join(BASE_DIR, "whl", "rec", lang),
rec_model_config["url"],
)
cls_model_config = get_model_config("OCR", params.ocr_version, "cls", "ch")
params.cls_model_dir, cls_url = confirm_model_dir_url(
params.cls_model_dir,
os.path.join(BASE_DIR, "whl", "cls"),
cls_model_config["url"],
)
if params.ocr_version in ["PP-OCRv3", "PP-OCRv4"]:
params.rec_image_shape = "3, 48, 320"
else:
params.rec_image_shape = "3, 32, 320"
# download model if using paddle infer
if not params.use_onnx:
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.cls_model_dir, cls_url)
if params.det_algorithm not in SUPPORT_DET_MODEL:
logger.error("det_algorithm must in {}".format(SUPPORT_DET_MODEL))
sys.exit(0)
if params.rec_algorithm not in SUPPORT_REC_MODEL:
logger.error("rec_algorithm must in {}".format(SUPPORT_REC_MODEL))
sys.exit(0)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(
Path(__file__).parent / rec_model_config["dict_path"]
)
logger.debug(params)
# init det_model and rec_model
super().__init__(params)
self.page_num = params.page_num
def ocr(
self,
img,
det=True,
rec=True,
cls=True,
bin=False,
inv=False,
alpha_color=(255, 255, 255),
slice={},
):
"""
OCR with PaddleOCR
Args:
img: Image for OCR. It can be an ndarray, img_path, or a list of ndarrays.
det: Use text detection or not. If False, only text recognition will be executed. Default is True.
rec: Use text recognition or not. If False, only text detection will be executed. Default is True.
cls: Use angle classifier or not. Default is True. If True, the text with a rotation of 180 degrees can be recognized. If no text is rotated by 180 degrees, use cls=False to get better performance.
bin: Binarize image to black and white. Default is False.
inv: Invert image colors. Default is False.
alpha_color: Set RGB color Tuple for transparent parts replacement. Default is pure white.
slice: Use sliding window inference for large images. Both det and rec must be True. Requires int values for slice["horizontal_stride"], slice["vertical_stride"], slice["merge_x_thres"], slice["merge_y_thres"] (See doc/doc_en/slice_en.md). Default is {}.
Returns:
If both det and rec are True, returns a list of OCR results for each image. Each OCR result is a list of bounding boxes and recognized text for each detected text region.
If det is True and rec is False, returns a list of detected bounding boxes for each image.
If det is False and rec is True, returns a list of recognized text for each image.
If both det and rec are False, returns a list of angle classification results for each image.
Raises:
AssertionError: If the input image is not of type ndarray, list, str, or bytes.
SystemExit: If det is True and the input is a list of images.
Note:
- If the angle classifier is not initialized (use_angle_cls=False), it will not be used during the forward process.
- For PDF files, if the input is a list of images and the page_num is specified, only the first page_num images will be processed.
- The preprocess_image function is used to preprocess the input image by applying alpha color replacement, inversion, and binarization if specified.
"""
assert isinstance(img, (np.ndarray, list, str, bytes))
if isinstance(img, list) and det == True:
logger.error("When input a list of images, det must be false")
exit(0)
if cls == True and self.use_angle_cls == False:
logger.warning(
"Since the angle classifier is not initialized, it will not be used during the forward process"
)
img, flag_gif, flag_pdf = check_img(img, alpha_color)
# for infer pdf file
if isinstance(img, list) and flag_pdf:
if self.page_num > len(img) or self.page_num == 0:
imgs = img
else:
imgs = img[: self.page_num]
else:
imgs = [img]
def preprocess_image(_image):
_image = alpha_to_color(_image, alpha_color)
if inv:
_image = cv2.bitwise_not(_image)
if bin:
_image = binarize_img(_image)
return _image
if det and rec:
ocr_res = []
for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, rec_res, _ = self.__call__(img, cls, slice)
if not dt_boxes and not rec_res:
ocr_res.append(None)
continue
tmp_res = [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
ocr_res.append(tmp_res)
return ocr_res
elif det and not rec:
ocr_res = []
for idx, img in enumerate(imgs):
img = preprocess_image(img)
dt_boxes, elapse = self.text_detector(img)
if dt_boxes.size == 0:
ocr_res.append(None)
continue
tmp_res = [box.tolist() for box in dt_boxes]
ocr_res.append(tmp_res)
return ocr_res
else:
ocr_res = []
cls_res = []
for idx, img in enumerate(imgs):
if not isinstance(img, list):
img = preprocess_image(img)
img = [img]
if self.use_angle_cls and cls:
img, cls_res_tmp, elapse = self.text_classifier(img)
if not rec:
cls_res.append(cls_res_tmp)
rec_res, elapse = self.text_recognizer(img)
ocr_res.append(rec_res)
if not rec:
return cls_res
return ocr_res
class PPStructure(StructureSystem):
"""
PPStructure class represents the structure analysis system for PaddleOCR.
"""
def __init__(self, **kwargs):
"""
Initializes the PPStructure object with the given parameters.
Args:
**kwargs: Additional keyword arguments to customize the behavior of the structure analysis system.
Raises:
AssertionError: If the structure version is not supported.
"""
params = parse_args(mMain=False)
params.__dict__.update(**kwargs)
assert (
params.structure_version in SUPPORT_STRUCTURE_MODEL_VERSION
), "structure_version must in {}, but get {}".format(
SUPPORT_STRUCTURE_MODEL_VERSION, params.structure_version
)
params.use_gpu = check_gpu(params.use_gpu)
params.mode = "structure"
if not params.show_log:
logger.setLevel(logging.INFO)
lang, det_lang = parse_lang(params.lang)
if lang == "ch":
table_lang = "ch"
else:
table_lang = "en"
if params.structure_version == "PP-Structure":
params.merge_no_span_structure = False
# init model dir
det_model_config = get_model_config("OCR", params.ocr_version, "det", det_lang)
params.det_model_dir, det_url = confirm_model_dir_url(
params.det_model_dir,
os.path.join(BASE_DIR, "whl", "det", det_lang),
det_model_config["url"],
)
rec_model_config = get_model_config("OCR", params.ocr_version, "rec", lang)
params.rec_model_dir, rec_url = confirm_model_dir_url(
params.rec_model_dir,
os.path.join(BASE_DIR, "whl", "rec", lang),
rec_model_config["url"],
)
table_model_config = get_model_config(
"STRUCTURE", params.structure_version, "table", table_lang
)
params.table_model_dir, table_url = confirm_model_dir_url(
params.table_model_dir,
os.path.join(BASE_DIR, "whl", "table"),
table_model_config["url"],
)
layout_model_config = get_model_config(
"STRUCTURE", params.structure_version, "layout", lang
)
params.layout_model_dir, layout_url = confirm_model_dir_url(
params.layout_model_dir,
os.path.join(BASE_DIR, "whl", "layout"),
layout_model_config["url"],
)
# download model
if not params.use_onnx:
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.table_model_dir, table_url)
maybe_download(params.layout_model_dir, layout_url)
if params.rec_char_dict_path is None:
params.rec_char_dict_path = str(
Path(__file__).parent / rec_model_config["dict_path"]
)
if params.table_char_dict_path is None:
params.table_char_dict_path = str(
Path(__file__).parent / table_model_config["dict_path"]
)
if params.layout_dict_path is None:
params.layout_dict_path = str(
Path(__file__).parent / layout_model_config["dict_path"]
)
logger.debug(params)
super().__init__(params)
def __call__(
self,
img,
return_ocr_result_in_table=False,
img_idx=0,
alpha_color=(255, 255, 255),
):
"""
Performs structure analysis on the input image.
Args:
img (str or numpy.ndarray): The input image to perform structure analysis on.
return_ocr_result_in_table (bool, optional): Whether to return OCR results in table format. Defaults to False.
img_idx (int, optional): The index of the image. Defaults to 0.
alpha_color (tuple, optional): The alpha color for transparent images. Defaults to (255, 255, 255).
Returns:
list or dict: The structure analysis results.
"""
img, flag_gif, flag_pdf = check_img(img, alpha_color)
if isinstance(img, list) and flag_pdf:
res_list = []
for index, pdf_img in enumerate(img):
logger.info("processing {}/{} page:".format(index + 1, len(img)))
res, _ = super().__call__(
pdf_img, return_ocr_result_in_table, img_idx=index
)
res_list.append(res)
return res_list
res, _ = super().__call__(img, return_ocr_result_in_table, img_idx=img_idx)
return res
def main():
"""
Main function for running PaddleOCR or PPStructure.
This function takes command line arguments, processes the images, and performs OCR or structure analysis based on the specified type.
Args:
None
Returns:
None
"""
# for cmd
args = parse_args(mMain=True)
image_dir = args.image_dir
if is_link(image_dir):
download_with_progressbar(image_dir, "tmp.jpg")
image_file_list = ["tmp.jpg"]
else:
image_file_list = get_image_file_list(args.image_dir)
if len(image_file_list) == 0:
logger.error("no images find in {}".format(args.image_dir))
return
if args.type == "ocr":
engine = PaddleOCR(**(args.__dict__))
elif args.type == "structure":
engine = PPStructure(**(args.__dict__))
else:
raise NotImplementedError
for img_path in image_file_list:
img_name = os.path.basename(img_path).split(".")[0]
logger.info("{}{}{}".format("*" * 10, img_path, "*" * 10))
if args.type == "ocr":
result = engine.ocr(
img_path,
det=args.det,
rec=args.rec,
cls=args.use_angle_cls,
bin=args.binarize,
inv=args.invert,
alpha_color=args.alphacolor,
)
if result is not None:
lines = []
for res in result:
for line in res:
logger.info(line)
lines.append(pprint.pformat(line) + "\n")
if args.savefile:
if os.path.exists(args.output) is False:
os.mkdir(args.output)
outfile = args.output + "/" + img_name + ".txt"
with open(outfile, "w", encoding="utf-8") as f:
f.writelines(lines)
elif args.type == "structure":
img, flag_gif, flag_pdf = check_and_read(img_path)
if not flag_gif and not flag_pdf:
img = cv2.imread(img_path)
if args.recovery and args.use_pdf2docx_api and flag_pdf:
try_import("pdf2docx")
from pdf2docx.converter import Converter
docx_file = os.path.join(args.output, "{}.docx".format(img_name))
cv = Converter(img_path)
cv.convert(docx_file)
cv.close()
logger.info("docx save to {}".format(docx_file))
continue
if not flag_pdf:
if img is None:
logger.error("error in loading image:{}".format(img_path))
continue
img_paths = [[img_path, img]]
else:
img_paths = []
for index, pdf_img in enumerate(img):
os.makedirs(os.path.join(args.output, img_name), exist_ok=True)
pdf_img_path = os.path.join(
args.output, img_name, img_name + "_" + str(index) + ".jpg"
)
cv2.imwrite(pdf_img_path, pdf_img)
img_paths.append([pdf_img_path, pdf_img])
all_res = []
for index, (new_img_path, img) in enumerate(img_paths):
logger.info("processing {}/{} page:".format(index + 1, len(img_paths)))
result = engine(img, img_idx=index)
save_structure_res(result, args.output, img_name, index)
if args.recovery and result != []:
h, w, _ = img.shape
result_cp = deepcopy(result)
result_sorted = sorted_layout_boxes(result_cp, w)
all_res += result_sorted
if args.recovery and all_res != []:
try:
convert_info_docx(img, all_res, args.output, img_name)
except Exception as ex:
logger.error(
"error in layout recovery image:{}, err msg: {}".format(
img_name, ex
)
)
continue
for item in all_res:
item.pop("img")
item.pop("res")
logger.info(item)
logger.info("result save to {}".format(args.output))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。