1 Star 0 Fork 47

德森/mfcplot

forked from rewine/mfcplot 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
CalculatorFunc.cpp 3.88 KB
一键复制 编辑 原始数据 按行查看 历史
LHX 提交于 2021-01-23 20:28 . 处理含空格的表达式
#include "pch.h"
#include "CalculatorFunc.h"
#define MAXNUM 30
#define MAXOPT 30
const double pi = 3.1415926535898;
const double e = 2.718281828459;
bool IsOpt(char c) {
return c == '+' || c == '-' || c == '*' || c == '/' || c == '^';
}
bool IsNum(char c) {
return c >= '0' && c <= '9' || c == 'e' || c == 'p';
}
double GetNum(CString& Eq, int& i, char xKey, double xVal)
{
int flag = 1;
if (i < Eq.GetLength() && Eq[i] == '-') {
flag = -1;
i++;
}
if (i < Eq.GetLength() && Eq[i] == 'p') {
i++;
return flag * pi;
}
if (i < Eq.GetLength() && Eq[i] == 'e') {
i++;
return flag * e;
}
//cout<<Eq[i]<<" ";
if (i < Eq.GetLength() && Eq[i] == xKey) {
i++;
return flag * xVal;
}
double x = 0;
while (i < Eq.GetLength() && IsNum(Eq[i]))
{
x = x * 10 + Eq[i] - '0';
i++;
}
double rad = 0.1;
if (i < Eq.GetLength() && Eq[i] == '.')
{
i++;
while (i < Eq.GetLength() && IsNum(Eq[i]))
{
x = x + (Eq[i] - '0') * rad;
rad = rad * 0.1;
i++;
}
}
return flag * x;
}
double Get_Equation_Num(CString& Eq, int& i, bool& succ, char xKey, double xVal) {
if (IsNum(Eq[i]) || Eq[i] == '-' || Eq[i] == xKey)
return GetNum(Eq, i, xKey, xVal);//如果是数直接读
CString single_func;//记录单目运算符
succ = false;
double tmp_ans = 0;//记录子式的值
int Lcnt = 0;//判断括号套括号,如sqrt(1+(1-1))
while (i < Eq.GetLength()) {
if (Eq[i] == '(') {//左括号,单目运算符已经记录完,接下来是子式
i++;
CString tmpEq;//记录子式
while (i < Eq.GetLength()) {
if (Eq[i] == '(') Lcnt++;
if (Eq[i] == ')') {
if (Lcnt)
Lcnt--;
else {//找到与第一个左括号匹配的右括号了
succ = true;//递归计算括号内子式的值
tmp_ans = CalcEquation(tmpEq, succ, xKey, xVal);
i++;
break;
}
}
tmpEq += Eq[i];
i++;
}
break;
}
single_func += Eq[i];
i++;
}
if (succ) {
if (single_func == _T(""))
return tmp_ans;
if (single_func == _T("sin"))
return sin(tmp_ans);
if (single_func == _T("cos"))
return cos(tmp_ans);
if (single_func == _T("tan"))
return tan(tmp_ans);
if (single_func == _T("abs"))
return abs(tmp_ans);
if (single_func == _T("floor"))
return floor(tmp_ans);
if (single_func == _T("ceil"))
return ceil(tmp_ans);
if (single_func == _T("round"))
return round(tmp_ans);
if (single_func == _T("sqrt"))
return sqrt(tmp_ans);
if (single_func == _T("ln"))
return log(tmp_ans);
if (single_func == _T("lg"))
return log10(tmp_ans);
succ = false;
return 0;
}
}
double Calc(double num1, char opt, double num2)
{
//cout << "calc " << num1 << opt << num2 << "\n";
switch (opt)
{
case '+': return num1 + num2;
case '-': return num1 - num2;
case '*': return num1 * num2;
case '/': return num1 / num2;
case '^': return pow(num1, num2);
}
}
int cPriority(char c) {
if (c == '^') return 3;
if (c == '*' || c == '/') return 2;
return 1;
}
double CalcEquation(CString m_sEquation, bool& succ, char xKey, double xVal) {
//m_sEquation表达式 succ计算是否成功 xKey未知数是"x"还是"t" xVal未知数的值
m_sEquation.Remove(' ');
if (m_sEquation.GetLength() == 0) {
succ = false;
return 0;
}
double num[MAXNUM];//数字栈
int ntop = -1;
char opt[MAXOPT];//表达式栈
int otop = -1;
int Len = m_sEquation.GetLength();
for (int i = 0; i < Len; ) {
num[++ntop] = Get_Equation_Num(m_sEquation, i, succ, xKey, xVal);
// Get_Equation_Num用于得到一个数字或者一个单目运算符+子式的值
if (i == Len) break;
if (!IsOpt(m_sEquation[i])) {//判断是否是双目运算符
succ = false;
return 0;
}
while (otop >= 0 && cPriority(opt[otop]) >= cPriority(m_sEquation[i])) {//高优先级出栈
num[ntop - 1] = Calc(num[ntop - 1], opt[otop], num[ntop]);
ntop--;
otop--;
}
opt[++otop] = m_sEquation[i];
i++;
}
while (otop >= 0 && ntop >= 1) {//没出栈的出栈
num[ntop - 1] = Calc(num[ntop - 1], opt[otop], num[ntop]);
ntop--;
otop--;
}
if (otop != -1 && ntop != 0)
succ = false;
return num[0];
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
C++
1
https://gitee.com/delson/mfcplot.git
git@gitee.com:delson/mfcplot.git
delson
mfcplot
mfcplot
master

搜索帮助