代码拉取完成,页面将自动刷新
同步操作将从 Gitee 极速下载/DeepCreamPy 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
try:
# default library
import os, logging, sys, config
except ImportError as e:
print("Error when importing DEFAULT library : ", e)
print("\nIf you made script named [\"os.py\", \"logging.py\", \"sys.py\", \"config.py\"] rename it")
print("If not, re-install python or check your Python environment variables")
try:
# local library
import file
from model import InpaintNN
from libs.utils import *
# external library
import numpy as np
from PIL import Image
import tensorflow as tf
from PySide2 import QtCore # for QThread
except ImportError as e:
print("\n"+ '='*20 + " ImportError " + "=" * 20 + "\n")
if e.__class__.__name__ == "ModuleNotFoundError":
print(e)
print("Python libraries are missing. You can install all required libraries by running in the command line (terminal)")
print("cpu version : pip install -r requirements-cpu.txt")
print("gpu version : pip install -r requirements-gpu.txt")
else:
print("Error when importing libraries: ", e)
print("\nIf pip doesn't work, try update through Anaconda")
print("install Anaconda : https://www.anaconda.com/distribution/ \n")
class Decensor(QtCore.QThread):
def __init__(self, parentThread = None, text_edit = None, text_cursor = None, ui_mode = None):
super().__init__(parentThread)
args = config.get_args()
self.is_mosaic = args.is_mosaic
self.variations = args.variations
self.mask_color = [args.mask_color_red/255.0, args.mask_color_green/255.0, args.mask_color_blue/255.0]
self.decensor_input_path = args.decensor_input_path
self.decensor_input_original_path = args.decensor_input_original_path
self.decensor_output_path = args.decensor_output_path
self.signals = None # Signals class will be given by progressWindow
self.model = None
self.warm_up = False
# if ui_mode is not None:
# self.ui_mode = ui_mode
# else:
# self.ui_mode = args.ui_mode
#
# if self.ui_mode:
# self.text_edit = text_edit
# self.text_cursor = text_cursor
# self.ui_mode = True
if not os.path.exists(self.decensor_output_path):
os.makedirs(self.decensor_output_path)
def run(self):
if not self.warm_up :
print("if self.warm_up :")
self.load_model()
return
elif self.warm_up:
print("elif not self.warm_up:")
self.decensor_all_images_in_folder()
def stop(self):
# in case of stopping decensor, terminate not to run if self while MainWindow is closed
self.terminate()
def find_mask(self, colored):
# self.signals.update_progress_LABEL.emit("find_mask()", "finding mask...")
mask = np.ones(colored.shape, np.uint8)
i, j = np.where(np.all(colored[0] == self.mask_color, axis=-1))
mask[0, i, j] = 0
return mask
def load_model(self):
self.signals.insertText_progressCursor.emit("Loading model ... please wait ...\n")
if self.model is None :
self.model = InpaintNN(bar_model_name = "./models/bar/Train_775000.meta",
bar_checkpoint_name = "./models/bar/",
mosaic_model_name = "./models/mosaic/Train_290000.meta",
mosaic_checkpoint_name = "./models/mosaic/",
is_mosaic=self.is_mosaic)
self.warm_up = True
print("load model finished")
self.signals.insertText_progressCursor.emit("Loading model finished!\n")
self.signals.update_decensorButton_Text.emit("Decensor Your Images")
self.signals.update_decensorButton_Enabled.emit(True)
def decensor_all_images_in_folder(self):
#load model once at beginning and reuse same model
if not self.warm_up :
# incase of running by source code
self.load_model()
input_color_dir = self.decensor_input_path
file_names = os.listdir(input_color_dir)
input_dir = self.decensor_input_path
output_dir = self.decensor_output_path
# Change False to True before release --> file.check_file(input_dir, output_dir, True)
# self.signals.update_progress_LABEL.emit("file.check_file()", "Checking image files and directory...")
self.signals.insertText_progressCursor.emit("Checking image files and directory...\n")
file_names, self.files_removed = file.check_file(input_dir, output_dir, False)
# self.signals.total_ProgressBar_update_MAX_VALUE.emit("set total progress bar MaxValue : "+str(len(file_names)),len(file_names))
'''
print("set total progress bar MaxValue : "+str(len(file_names)))
self.signals.update_ProgressBar_MAX_VALUE.emit(len(file_names))
'''
self.signals.insertText_progressCursor.emit("Decensoring {} image files\n".format(len(file_names)))
#convert all images into np arrays and put them in a list
for n, file_name in enumerate(file_names, start = 1):
# self.signals.total_ProgressBar_update_VALUE.emit("Decensoring {} / {}".format(n, len(file_names)), n)
'''
self.update_ProgressBar_SET_VALUE.emit(n)
print("Decensoring {} / {}".format(n, len(file_names)))
'''
self.signals.insertText_progressCursor.emit("Decensoring image file : {}\n".format(file_name))
# signal progress bar value == masks decensored on image ,
# e.g) sample image : 17
# self.signals.signal_ProgressBar_update_VALUE.emit("reset value", 0) # set to 0 for every image at start
# self.signals.update_progress_LABEL.emit("for-loop, \"for file_name in file_names:\"","Decensoring : "+str(file_name))
color_file_path = os.path.join(input_color_dir, file_name)
color_basename, color_ext = os.path.splitext(file_name)
if os.path.isfile(color_file_path) and color_ext.casefold() == ".png":
print("--------------------------------------------------------------------------")
print("Decensoring the image {}\n".format(color_file_path))
try :
colored_img = Image.open(color_file_path)
except:
print("Cannot identify image file (" +str(color_file_path)+")")
self.files_removed.append((color_file_path,3))
# incase of abnormal file format change (ex : text.txt -> text.png)
continue
#if we are doing a mosaic decensor
if self.is_mosaic:
#get the original file that hasn't been colored
ori_dir = self.decensor_input_original_path
test_file_names = os.listdir(ori_dir)
#since the original image might not be a png, test multiple file formats
valid_formats = {".png", ".jpg", ".jpeg"}
for test_file_name in test_file_names:
test_basename, test_ext = os.path.splitext(test_file_name)
if (test_basename == color_basename) and (test_ext.casefold() in valid_formats):
ori_file_path = os.path.join(ori_dir, test_file_name)
ori_img = Image.open(ori_file_path)
# colored_img.show()
self.decensor_image_variations(ori_img, colored_img, file_name)
break
else: #for...else, i.e if the loop finished without encountering break
print("Corresponding original, uncolored image not found in {}".format(color_file_path))
print("Check if it exists and is in the PNG or JPG format.")
self.signals.insertText_progressCursor.emit("Corresponding original, uncolored image not found in {}\n".format(color_file_path))
self.signals.insertText_progressCursor.emit("Check if it exists and is in the PNG or JPG format.\n")
#if we are doing a bar decensor
else:
self.decensor_image_variations(colored_img, colored_img, file_name)
else:
print("--------------------------------------------------------------------------")
print("Image can't be found: "+str(color_file_path))
self.signals.insertText_progressCursor.emit("Image can't be found: "+str(color_file_path) + "\n")
print("--------------------------------------------------------------------------")
if self.files_removed is not None:
file.error_messages(None, self.files_removed)
print("\nDecensoring complete!")
#unload model to prevent memory issues
# self.signals.update_progress_LABEL.emit("finished", "Decensoring complete! Close this window and reopen DCP to start a new session.")
self.signals.insertText_progressCursor.emit("\nDecensoring complete! remove decensored file before decensoring again not to overwrite")
self.signals.update_decensorButton_Enabled.emit(True)
tf.reset_default_graph()
def decensor_image_variations(self, ori, colored, file_name=None):
for i in range(self.variations):
self.decensor_image_variation(ori, colored, i, file_name)
#create different decensors of the same image by flipping the input image
def apply_variant(self, image, variant_number):
if variant_number == 0:
return image
elif variant_number == 1:
return image.transpose(Image.FLIP_LEFT_RIGHT)
elif variant_number == 2:
return image.transpose(Image.FLIP_TOP_BOTTOM)
else:
return image.transpose(Image.FLIP_LEFT_RIGHT).transpose(Image.FLIP_TOP_BOTTOM)
#decensors one image at a time
#TODO: decensor all cropped parts of the same image in a batch (then i need input for colored an array of those images and make additional changes)
def decensor_image_variation(self, ori, colored, variant_number, file_name):
ori = self.apply_variant(ori, variant_number)
colored = self.apply_variant(colored, variant_number)
width, height = ori.size
#save the alpha channel if the image has an alpha channel
has_alpha = False
if (ori.mode == "RGBA"):
has_alpha = True
alpha_channel = np.asarray(ori)[:,:,3]
alpha_channel = np.expand_dims(alpha_channel, axis =-1)
ori = ori.convert('RGB')
ori_array = image_to_array(ori)
ori_array = np.expand_dims(ori_array, axis = 0)
if self.is_mosaic:
#if mosaic decensor, mask is empty
# mask = np.ones(ori_array.shape, np.uint8)
# print(mask.shape)
colored = colored.convert('RGB')
color_array = image_to_array(colored)
color_array = np.expand_dims(color_array, axis = 0)
mask = self.find_mask(color_array)
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
# mask_img.show()
else:
mask = self.find_mask(ori_array)
#colored image is only used for finding the regions
regions = find_regions(colored.convert('RGB'), [v*255 for v in self.mask_color])
print("Found {region_count} censored regions in this image!".format(region_count = len(regions)))
self.signals.insertText_progressCursor.emit("Found {region_count} censored regions in this image!".format(region_count = len(regions)))
if len(regions) == 0 and not self.is_mosaic:
print("No green (0,255,0) regions detected! Make sure you're using exactly the right color.")
self.signals.insertText_progressCursor.emit("No green (0,255,0) regions detected! Make sure you're using exactly the right color.\n")
return
# self.signals.signal_ProgressBar_update_MAX_VALUE.emit("Found {} masked regions".format(len(regions)), len(regions))
print("Found {} masked regions".format(len(regions)))
# self.signals.insertText_progressCursor.emit("Found {} masked regions\n".format(len(regions)))
self.signals.update_ProgressBar_MAX_VALUE.emit(len(regions))
self.signals.update_ProgressBar_SET_VALUE.emit(0)
output_img_array = ori_array[0].copy()
for region_counter, region in enumerate(regions, 1):
# self.signals.update_progress_LABEL.emit("\"Decensoring regions in image\"","Decensoring censor {}/{}".format(region_counter,len(regions)))
self.signals.insertText_progressCursor.emit("Decensoring regions in image, Decensoring censor {}/{}".format(region_counter,len(regions)))
bounding_box = expand_bounding(ori, region, expand_factor=1.5)
crop_img = ori.crop(bounding_box)
# crop_img.show()
#convert mask back to image
mask_reshaped = mask[0,:,:,:] * 255.0
mask_img = Image.fromarray(mask_reshaped.astype('uint8'))
#resize the cropped images
crop_img = crop_img.resize((256, 256))
crop_img_array = image_to_array(crop_img)
#resize the mask images
mask_img = mask_img.crop(bounding_box)
mask_img = mask_img.resize((256, 256))
# mask_img.show()
#convert mask_img back to array
mask_array = image_to_array(mask_img)
#the mask has been upscaled so there will be values not equal to 0 or 1
# mask_array[mask_array > 0] = 1
# crop_img_array[..., :-1][mask_array==0] = (0,0,0)
if not self.is_mosaic:
a, b = np.where(np.all(mask_array == 0, axis = -1))
# print(a,b)
# print(crop_img_array[a,b])
# print(crop_img_array[a,b,0])
# print(crop_img_array.shape)
# print(type(crop_img_array[0,0]))
crop_img_array[a,b,:] = 0.
# temp = Image.fromarray((crop_img_array * 255.0).astype('uint8'))
# temp.show()
crop_img_array = np.expand_dims(crop_img_array, axis = 0)
mask_array = np.expand_dims(mask_array, axis = 0)
# print(np.amax(crop_img_array))
# print(np.amax(mask_array))
# print(np.amax(masked))
# print(np.amin(crop_img_array))
# print(np.amin(mask_array))
# print(np.amin(masked))
# print(mask_array)
crop_img_array = crop_img_array * 2.0 - 1
# mask_array = mask_array / 255.0
# Run predictions for this batch of images
pred_img_array = self.model.predict(crop_img_array, crop_img_array, mask_array)
pred_img_array = np.squeeze(pred_img_array, axis = 0)
pred_img_array = (255.0 * ((pred_img_array + 1.0) / 2.0)).astype(np.uint8)
#scale prediction image back to original size
bounding_width = bounding_box[2]-bounding_box[0]
bounding_height = bounding_box[3]-bounding_box[1]
#convert np array to image
# print(bounding_width,bounding_height)
# print(pred_img_array.shape)
pred_img = Image.fromarray(pred_img_array.astype('uint8'))
# pred_img.show()
pred_img = pred_img.resize((bounding_width, bounding_height), resample = Image.BICUBIC)
# pred_img.show()
pred_img_array = image_to_array(pred_img)
# print(pred_img_array.shape)
pred_img_array = np.expand_dims(pred_img_array, axis = 0)
# copy the decensored regions into the output image
for i in range(len(ori_array)):
for col in range(bounding_width):
for row in range(bounding_height):
bounding_width_index = col + bounding_box[0]
bounding_height_index = row + bounding_box[1]
if (bounding_width_index, bounding_height_index) in region:
output_img_array[bounding_height_index][bounding_width_index] = pred_img_array[i,:,:,:][row][col]
# self.signals.signal_ProgressBar_update_VALUE.emit("{} out of {} regions decensored.".format(region_counter, len(regions)), region_counter)
self.signals.update_ProgressBar_SET_VALUE.emit(region_counter)
self.signals.insertText_progressCursor.emit("{} out of {} regions decensored.\n".format(region_counter, len(regions)))
print("{region_counter} out of {region_count} regions decensored.".format(region_counter=region_counter, region_count=len(regions)))
output_img_array = output_img_array * 255.0
#restore the alpha channel if the image had one
if has_alpha:
output_img_array = np.concatenate((output_img_array, alpha_channel), axis = 2)
output_img = Image.fromarray(output_img_array.astype('uint8'))
output_img = self.apply_variant(output_img, variant_number)
# self.signals.update_progress_LABEL.emit("current image finished", "Decensoring of current image finished. Saving image...")
self.signals.insertText_progressCursor.emit("Decensoring of current image finished. Saving image...")
print("current image finished")
if file_name != None:
#save the decensored image
base_name, ext = os.path.splitext(file_name)
file_name = base_name + " " + str(variant_number) + ext
save_path = os.path.join(self.decensor_output_path, file_name)
output_img.save(save_path)
print("Decensored image saved to {save_path}!".format(save_path=save_path))
self.signals.insertText_progressCursor.emit("Decensored image saved to {save_path}!".format(save_path=save_path))
self.signals.insertText_progressCursor.emit("="*30)
else:
# Legacy Code piece ↓, used when DCPv1 had ui with Painting
print("Decensored image. Returning it.")
return output_img
# if __name__ == '__main__':
# decensor = Decensor()
# decensor.decensor_all_images_in_folder()
# equivalent to decensor.start() (running as QtThread)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。