代码拉取完成,页面将自动刷新
import numpy as np
import torch
# source: https://github.com/charlesq34/pointnet2/blob/74bb67f3702e8aec55a7b8765dd728b18456030c/utils/provider.py#L187-L198
def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
""" Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds
"""
B, N, C = batch_data.shape
assert(clip > 0)
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
jittered_data += batch_data
return jittered_data
# source: https://github.com/charlesq34/pointnet2/blob/74bb67f3702e8aec55a7b8765dd728b18456030c/utils/provider.py#L32-L50
def rotate_point_cloud(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in range(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
# source: https://github.com/WangYueFt/dgcnn/blob/master/pytorch/data.py
def translate_pointcloud(pointcloud):
xyz1 = np.random.uniform(low=2./3., high=3./2., size=[3])
xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3])
translated_pointcloud = np.add(np.multiply(pointcloud, xyz1), xyz2).astype('float32')
return translated_pointcloud
# based on https://github.com/Yochengliu/Relation-Shape-CNN/blob/master/data/data_utils.py#L81
class PointcloudScaleAndTranslate(object):
def __init__(self, scale_low=2. / 3., scale_high=3. / 2., translate_range=0.2, no_z_aug=False):
"""
:param scale_low:
:param scale_high:
:param translate_range:
:param no_z: no translation and scaling along the z axis
"""
self.scale_low = scale_low
self.scale_high = scale_high
self.translate_range = translate_range
self.no_z_aug = no_z_aug
def __call__(self, pc):
bsize = pc.size()[0]
for i in range(bsize):
xyz1 = np.random.uniform(low=self.scale_low, high=self.scale_high, size=[3])
xyz2 = np.random.uniform(low=-self.translate_range, high=self.translate_range, size=[3])
if self.no_z_aug:
xyz1[2] = 1.0
xyz2[2] = 0.0
pc[i, :, 0:3] = torch.mul(pc[i, :, 0:3], torch.from_numpy(xyz1).float().cuda()) + torch.from_numpy(xyz2).float().cuda()
return pc
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。