1 Star 0 Fork 1

张金来/ModelNet40-C

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main_ada_ep.py 37.42 KB
一键复制 编辑 原始数据 按行查看 历史
张金来 提交于 2022-08-23 19:50 . repair the num_class problem
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim.lr_scheduler as lr_scheduler
import random
from dataloader import create_dataloader
from time import time
from datetime import datetime
from progressbar import ProgressBar
import models
from torch.autograd import Variable
from collections import defaultdict
import os
import numpy as np
import argparse
from all_utils import (
TensorboardManager, PerfTrackTrain,
PerfTrackVal, TrackTrain, smooth_loss, DATASET_NUM_CLASS,
rscnn_voting_evaluate_cls, pn2_vote_evaluate_cls)
from configs import get_cfg_defaults
import pprint
from pointnet_pyt.pointnet.model import feature_transform_regularizer
import sys
import aug_utils
from third_party import bn_helper, tent_helper
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if DEVICE.type == 'cpu':
print('WARNING: Using CPU')
def adapt_bn(data,model,cfg):
model = bn_helper.configure_model(model,eps=1e-5, momentum=0.1,reset_stats=False,no_stats=False)
for _ in range(cfg.ITER):
model(**data)
print("Adaptation Done ...")
model.eval()
return model
def adapt_tent(data,model,cfg):
model = tent_helper.configure_model(model,eps=1e-5, momentum=0.1)
parameter,_ = tent_helper.collect_params(model)
optimizer_tent = torch.optim.SGD(parameter, lr=0.001,momentum=0.9)
for _ in range(cfg.ITER):
# index = np.random.choice(args.number,args.batch_size,replace=False)
tent_helper.forward_and_adapt(data,model,optimizer_tent)
print("Adaptation Done ...")
model.eval()
return model
def check_inp_fmt(task, data_batch, dataset_name):
if task in ['cls', 'cls_trans']:
# assert set(data_batch.keys()) == {'pc', 'label'}
# print(data_batch['pc'],data_batch['label'])
pc, label = data_batch['pc'], data_batch['label']
# special case made for modelnet40_dgcnn to match the
# original implementation
# dgcnn loads torch.DoubleTensor for the test dataset
if dataset_name == 'modelnet40_dgcnn':
assert isinstance(pc, torch.FloatTensor) or isinstance(
pc, torch.DoubleTensor)
else:
if not isinstance(pc, torch.FloatTensor):
pc = pc.float()
assert isinstance(pc, torch.FloatTensor)
assert isinstance(label, torch.LongTensor)
assert len(pc.shape) == 3
assert len(label.shape) == 1
b1, _, y = pc.shape[0], pc.shape[1], pc.shape[2]
b2 = label.shape[0]
assert b1 == b2
assert y == 3
assert label.max().item() < DATASET_NUM_CLASS[dataset_name]
assert label.min().item() >= 0
else:
assert NotImplemented
def check_out_fmt(task, out, dataset_name):
if task == 'cls':
assert set(out.keys()) == {'logit'}
logit = out['logit']
assert isinstance(logit, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert len(logit.shape) == 2
assert DATASET_NUM_CLASS[dataset_name] == logit.shape[1]
elif task == 'cls_trans':
assert set(out.keys()) == {'logit', 'trans_feat'}
logit = out['logit']
trans_feat = out['trans_feat']
assert isinstance(logit, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert isinstance(trans_feat, torch.FloatTensor if DEVICE.type == 'cpu' else torch.cuda.FloatTensor)
assert len(logit.shape) == 2
assert len(trans_feat.shape) == 3
assert trans_feat.shape[0] == logit.shape[0]
# 64 coming from pointnet implementation
assert (trans_feat.shape[1] == trans_feat.shape[2]) and (trans_feat.shape[1] == 64)
assert DATASET_NUM_CLASS[dataset_name] == logit.shape[1]
else:
assert NotImplemented
def get_inp(task, model, data_batch, batch_proc, dataset_name):
check_inp_fmt(task, data_batch, dataset_name)
if not batch_proc is None:
data_batch = batch_proc(data_batch, DEVICE)
check_inp_fmt(task, data_batch, dataset_name)
if isinstance(model, nn.DataParallel):
model_type = type(model.module)
else:
model_type = type(model)
if task in ['cls', 'cls_trans']:
pc = data_batch['pc']
inp = {'pc': pc}
else:
assert False
return inp
def get_loss(task, loss_name, data_batch, out, dataset_name):
"""
Returns the tensor loss function
:param task:
:param loss_name:
:param data_batch: batched data; note not applied data_batch
:param out: output from the model
:param dataset_name:
:return: tensor
"""
check_out_fmt(task, out, dataset_name)
if task == 'cls':
label = data_batch['label'].to(out['logit'].device)
if loss_name == 'cross_entropy':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = F.cross_entropy(out['logit'], label)
# source: https://github.com/WangYueFt/dgcnn/blob/master/pytorch/util.py
elif loss_name == 'smooth':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = smooth_loss(out['logit'], label)
else:
assert False
elif task == 'cls_trans':
label = data_batch['label'].to(out['logit'].device)
trans_feat = out['trans_feat']
logit = out['logit']
if loss_name == 'cross_entropy':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = F.cross_entropy(out['logit'], label)
loss += feature_transform_regularizer(trans_feat) * 0.001
elif loss_name == 'smooth':
if 'label_2' in data_batch.keys():
label_2 = data_batch['label_2'].to(out['logit'].device)
if isinstance(data_batch['lam'],torch.Tensor):
loss = 0
for i in range(data_batch['pc'].shape[0]):
loss_tmp = smooth_loss(out['logit'][i].unsqueeze(0), label[i].unsqueeze(0).long()) * (1 - data_batch['lam'][i]) + smooth_loss(out['logit'][i].unsqueeze(0), label_2[i].unsqueeze(0).long()) * data_batch['lam'][i]
loss += loss_tmp
loss = loss / data_batch['pc'].shape[0]
else:
loss = smooth_loss(out['logit'], label) * (1 - data_batch['lam']) + smooth_loss(out['logit'], label_2) * data_batch['lam']
else:
loss = smooth_loss(out['logit'], label)
loss += feature_transform_regularizer(trans_feat) * 0.001
else:
assert False
else:
assert False
return loss
def robust_validate(task, loader, model, loss_name, dataset_name, adapt = None, confusion = False):
model.eval()
def get_extra_param():
return None
perf = PerfTrackVal(task, extra_param=get_extra_param())
time_dl = 0
time_gi = 0
time_model = 0
time_upd = 0
# with torch.no_grad():
bar = ProgressBar(max_value=len(loader))
time5 = time()
if confusion:
pred = []
ground = []
for i, data in enumerate(loader):
time1 = time()
data_batch, indices = data
data_batch = aug_utils.pgd(data_batch,model, task, 'cross_entropy', dataset_name, step= 20, eps=0.08, alpha=0.005)
inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
time2 = time()
if adapt.METHOD == 'bn':
model = adapt_bn(inp,model,adapt)
elif adapt.METHOD == 'tent':
model = adapt_tent(inp,model,adapt)
out = model(**inp)
if confusion:
pred.append(out['logit'].squeeze().cpu())
ground.append(data_batch['label'].squeeze().cpu())
time3 = time()
perf.update(data_batch=data_batch, out=out)
time4 = time()
time_dl += (time1 - time5)
time_gi += (time2 - time1)
time_model += (time3 - time2)
time_upd += (time4 - time3)
time5 = time()
bar.update(i)
print(f"Time DL: {time_dl}, Time Get Inp: {time_gi}, Time Model: {time_model}, Time Update: {time_upd}")
if not confusion:
return perf.agg()
else:
pred = np.argmax(torch.cat(pred).numpy(), axis=1)
# print(pred)
ground = torch.cat(ground).numpy()
# print(ground)
return perf.agg(), pred, ground
def validate(task, loader, model, dataset_name, adapt = None, confusion = False):
model.eval()
def get_extra_param():
return None
perf = PerfTrackVal(task, extra_param=get_extra_param())
time_dl = 0
time_gi = 0
time_model = 0
time_upd = 0
with torch.no_grad():
bar = ProgressBar(max_value=len(loader))
time5 = time()
if confusion:
pred = []
ground = []
for i, data in enumerate(loader):
time1 = time()
data_batch, indices = data
inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
time2 = time()
if adapt.METHOD == 'bn':
model = adapt_bn(inp,model,adapt)
elif adapt.METHOD == 'tent':
model = adapt_tent(inp,model,adapt)
out = model(**inp)
if confusion:
pred.append(out['logit'].squeeze().cpu())
ground.append(data_batch['label'].squeeze().cpu())
time3 = time()
perf.update(data_batch=data_batch, out=out)
time4 = time()
time_dl += (time1 - time5)
time_gi += (time2 - time1)
time_model += (time3 - time2)
time_upd += (time4 - time3)
time5 = time()
bar.update(i)
print(f"Time DL: {time_dl}, Time Get Inp: {time_gi}, Time Model: {time_model}, Time Update: {time_upd}")
if not confusion:
return perf.agg()
else:
pred = np.argmax(torch.cat(pred).numpy(), axis=1)
# print(pred)
ground = torch.cat(ground).numpy()
# print(ground)
return perf.agg(), pred, ground
def epsilon_select(task, model, data_batch, load, dataset_name, loss_name, epoch, step=7):
# self.model.eval()
epsilon_memory = torch.FloatTensor(len(data_batch['pc'])).fill_(cmd_args.attack_eps/(2)).cuda()
with torch.no_grad():
inp = get_inp(task, model, data_batch, load, dataset_name)
logits = model(**inp)['logit']
_, pred = torch.max(logits, dim=1)
# print(pred)
correct_preds_clean = (pred == data_batch['label'].cuda()).float()
if epoch < cmd_args.warmup:
new_ep = np.random.randint(2, 10)
epsilon = torch.zeros(data_batch['pc'].size(0)).fill_(cmd_args.attack_eps/new_ep).cuda()
epsilon = epsilon * correct_preds_clean
else:
epsilon_prev = epsilon_memory
epsilon_low = epsilon_prev - cmd_args.gamma
epsilon_cur = epsilon_prev
epsilon_high = epsilon_prev + cmd_args.gamma
attack_lr_cur = torch.clamp(epsilon_cur / (0.5 * cmd_args.attack_steps), min=cmd_args.attack_lr)
attack_lr_high = torch.clamp(epsilon_high / (0.5 * cmd_args.attack_steps), min=cmd_args.attack_lr)
data_batch_cur = aug_utils.adaep_pgd(data_batch, model, task, loss_name, dataset_name, epsilon_cur, attack_lr_cur)
data_batch_high = aug_utils.adaep_pgd(data_batch, model, task, loss_name, dataset_name, epsilon_high, attack_lr_high)
# input_cur = self.attacker.attack(input, target, self.model, cmd_args.attack_steps,
# attack_lr_cur, epsilon_cur,
# random_init=True, target=None)
# input_high = self.attacker.attack(input, target, self.model, cmd_args.attack_steps,
# attack_lr_high, epsilon_high,
# random_init=True, target=None)
with torch.no_grad():
cur_inp = get_inp(task, model, data_batch_cur, load, dataset_name)
high_inp = get_inp(task, model, data_batch_high, load, dataset_name)
logits_cur = model(**cur_inp)['logit']
logits_high = model(**high_inp)['logit']
_, logits_cur = torch.max(logits_cur, dim=1)
_, logits_high = torch.max(logits_high, dim=1)
pred_cur = (logits_cur == data_batch['label'].cuda()).float()
pred_high = (logits_high == data_batch['label'].cuda()).float()
epsilon = pred_high * epsilon_high + (1 - pred_high) * pred_cur * epsilon_cur + \
(1 - pred_high) * (1 - pred_cur) * epsilon_low
epsilon = epsilon * correct_preds_clean
epsilon = torch.clamp(epsilon, min=0)
epsilon = epsilon * cmd_args.beta + epsilon_prev * (1 - cmd_args.beta)
# Updating memory
# self.epsilon_memory[indices] = epsilon
return epsilon
#########################################
# Label Smoothing using Dirichlet dist.
#########################################
def label_smoothing(targets, epsilon, c, num_classes=10):
onehot = torch.eye(num_classes)[targets] #.cuda()
dirich = torch.from_numpy(np.random.dirichlet(np.ones(num_classes), targets.size(0))) #.cuda()
sr = (torch.ones(targets.size(0)) * (c*epsilon)).unsqueeze(1).repeat(1, num_classes)
ones = torch.ones_like(sr)
y_tilde = (ones - sr) * onehot + sr * dirich
return y_tilde
def train(task, loader, model, optimizer, loss_name, dataset_name, cfg, epoch, epsilons):
model.train()
def get_extra_param():
return None
perf = PerfTrackTrain(task, extra_param=get_extra_param())
time_forward = 0
time_backward = 0
time_data_loading = 0
eta = 5e-4
epsilon_max = 0.08
time3 = time()
# epsilons = torch.zeros(len(loader.dataset)) #.cuda()
for i, data in enumerate(loader):
time1 = time()
# print(data)
data_batch, indices = data
epsilons[indices] += eta
# data_batch['label'] = label_smoothing(data_batch['label'], epsilons[indices], 10, 10)
# print(data_batch)
# print("-----here")
x_natural = data_batch.copy()
if cfg.AUG.NAME == 'cutmix_r':
data_batch = aug_utils.cutmix_r(data_batch,cfg)
elif cfg.AUG.NAME == 'cutmix_k':
data_batch = aug_utils.cutmix_k(data_batch,cfg)
elif cfg.AUG.NAME == 'mixup':
data_batch = aug_utils.mixup(data_batch,cfg)
elif cfg.AUG.NAME == 'rsmix':
data_batch = aug_utils.rsmix(data_batch,cfg)
elif cfg.AUG.NAME == 'adaep_pgd':
data_batch = aug_utils.adaep_pgd(data_batch,model, task, loss_name, dataset_name, epsilons[indices], step=7, alpha=0.015)
model.train()
elif cfg.AUG.NAME == 'adaepknn_pgd':
data_batch = aug_utils.adaepknn_pgd(data_batch,model, task, loss_name, dataset_name, epsilons[indices], step=7, alpha=0.015)
model.train()
# elif cfg.AUG.NAME == 'adaep_pgd':
# load = loader.dataset.batch_proc
# epsilon_arr = epsilon_select(task, model, data_batch, load, dataset_name, loss_name, epoch)
# attack_lr_arr = torch.clamp(epsilon_arr / (0.5 * 7), min=cmd_args.attack_lr)
# data_batch = aug_utils.adaep_pgd(data_batch, model, task, loss_name, dataset_name, epsilon_arr, attack_lr_arr)
# model.train()
# print(data_batch)
inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
out = model(**inp)
## adapt eps
## warm up
# la = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08]
# if epoch<80:
# print("under 80------")
# epsilons[indices] = torch.ones(data_batch['label'].size(0)) * la[epoch // 10]
# elif epoch > 200:
# print("bigger than 200------")
# epsilons[indices] = torch.ones(data_batch['label'].size(0)) * epsilon_max
# else:
# print("in 80 to 200------")
t_or_f = torch.argmax(torch.softmax(out['logit'].detach().cpu(), dim=1), dim=1).eq(data_batch['label'])
false_indices = indices[torch.where(t_or_f==False)[0]]
epsilons[false_indices] -= eta
epsilons[indices] = torch.min(epsilons[indices], (torch.ones(data_batch['label'].size(0)) * epsilon_max)) #.cuda())
# print(epsilons[indices])
smooth_label = label_smoothing(data_batch['label'], epsilons[indices], 1, DATASET_NUM_CLASS[dataset_name])
probs = torch.softmax(out['logit'], dim=1)
loss = -torch.sum(smooth_label.cuda() * torch.log(probs))/probs.size(0)
# loss = get_loss(task, loss_name, data_batch, out, dataset_name)
perf.update_all(data_batch=data_batch, out=out, loss=loss)
time2 = time()
## robust loss
if cfg.ADVT.NAME == 'trades':
criterion_kl = nn.KLDivLoss(size_average=False)
batch_size = len(data_batch['pc'])
data_batch['pc'] = Variable(data_batch['pc'], requires_grad=False)
natural_inp = get_inp(task, model, x_natural, loader.dataset.batch_proc, dataset_name)
adv_inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(**adv_inp)['logit'], dim=1),
F.softmax(model(**natural_inp)['logit'], dim=1))
loss = loss + loss_robust
elif cfg.ADVT.NAME == 'mart':
criterion_kl = nn.KLDivLoss(reduction='none')
batch_size = len(data_batch['pc'])
data_batch['pc'] = Variable(data_batch['pc'], requires_grad=False)
natural_inp = get_inp(task, model, x_natural, loader.dataset.batch_proc, dataset_name)
adv_inp = get_inp(task, model, data_batch, loader.dataset.batch_proc, dataset_name)
logits = model(**natural_inp)['logit']
logits_adv = model(**adv_inp)['logit']
y = data_batch['label'].to(logits.device)
adv_probs = F.softmax(logits_adv, dim=1)
tmp1 = torch.argsort(adv_probs, dim=1)[:, -2:]
new_y = torch.where(tmp1[:, -1] == y, tmp1[:, -2], tmp1[:, -1])
loss_adv = F.cross_entropy(logits_adv, y) + F.nll_loss(torch.log(1.0001 - adv_probs + 1e-12), new_y)
nat_probs = F.softmax(logits, dim=1)
true_probs = torch.gather(nat_probs, 1, (y.unsqueeze(1)).long()).squeeze()
loss_robust = (1.0 / batch_size) * torch.sum(torch.sum(criterion_kl(torch.log(adv_probs + 1e-12), nat_probs), dim=1) * (1.0000001 - true_probs))
# loss_robust = (1.0 / batch_size) * criterion_kl(F.log_softmax(model(**adv_inp)['logit'], dim=1),
# F.softmax(model(**natural_inp)['logit'], dim=1))
loss = loss + 6.0*loss_robust
if loss.ne(loss).any():
print("WARNING: avoiding step as nan in the loss")
else:
optimizer.zero_grad()
loss.backward()
bad_grad = False
for x in model.parameters():
if x.grad is not None:
if x.grad.ne(x.grad).any():
print("WARNING: nan in a gradient")
bad_grad = True
break
if ((x.grad == float('inf')) | (x.grad == float('-inf'))).any():
print("WARNING: inf in a gradient")
bad_grad = True
break
if bad_grad:
print("WARNING: avoiding step as bad gradient")
else:
optimizer.step()
time_data_loading += (time1 - time3)
time_forward += (time2 - time1)
time3 = time()
time_backward += (time3 - time2)
if i % 50 == 0:
print(
f"[{i}/{len(loader)}] avg_loss: {perf.agg_loss()}, FW time = {round(time_forward, 2)}, "
f"BW time = {round(time_backward, 2)}, DL time = {round(time_data_loading, 2)}")
return perf.agg(), perf.agg_loss()
def save_checkpoint(id, epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg):
model.cpu()
path = f"./runs/{cfg.EXP.EXP_ID}/model_{id}.pth"
torch.save({
'cfg': vars(cfg),
'epoch': epoch,
'model_state': model.state_dict(),
'optimizer_state': optimizer.state_dict(),
'lr_sched_state': lr_sched.state_dict(),
'bnm_sched_state': bnm_sched.state_dict() if bnm_sched is not None else None,
'test_perf': test_perf,
}, path)
print('Checkpoint saved to %s' % path)
model.to(DEVICE)
def load_best_checkpoint(model, cfg):
path = f"./runs/{cfg.EXP.EXP_ID}/model_best.pth"
checkpoint = torch.load(path)
model.load_state_dict(checkpoint['model_state'])
print('Checkpoint loaded from %s' % path)
def load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path):
print(f'Recovering model and checkpoint from {model_path}')
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
if isinstance(model, nn.DataParallel):
model.module.load_state_dict(checkpoint['model_state'])
else:
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
model = model.module
optimizer.load_state_dict(checkpoint['optimizer_state'])
# for backward compatibility with saved models
if 'lr_sched_state' in checkpoint:
lr_sched.load_state_dict(checkpoint['lr_sched_state'])
if checkpoint['bnm_sched_state'] is not None:
bnm_sched.load_state_dict(checkpoint['bnm_sched_state'])
else:
print("WARNING: lr scheduler and bnm scheduler states are not loaded.")
return model
def get_model(cfg):
if cfg.EXP.MODEL_NAME == 'simpleview':
model = models.MVModel(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.MV)
elif cfg.EXP.MODEL_NAME == 'rscnn':
model = models.RSCNN(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.RSCNN)
elif cfg.EXP.MODEL_NAME == 'pointnet2':
model = models.PointNet2(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET,
**cfg.MODEL.PN2)
elif cfg.EXP.MODEL_NAME == 'dgcnn':
model = models.DGCNN(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointnet':
model = models.PointNet(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pct':
model = models.Pct(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointMLP':
model = models.pointMLP(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'pointMLP2':
model = models.pointMLP2(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'curvenet':
model = models.CurveNet(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
elif cfg.EXP.MODEL_NAME == 'gdanet':
model = models.GDANET(
task=cfg.EXP.TASK,
dataset=cfg.EXP.DATASET)
else:
assert False
return model
def get_metric_from_perf(task, perf, metric_name):
if task in ['cls', 'cls_trans']:
assert metric_name in ['acc']
metric = perf[metric_name]
else:
assert False
return metric
def get_optimizer(optim_name, tr_arg, model):
if optim_name == 'vanilla':
optimizer = torch.optim.Adam(
model.parameters(),
lr=tr_arg.learning_rate,
weight_decay=tr_arg.l2)
lr_sched = lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
factor=tr_arg.lr_decay_factor,
patience=tr_arg.lr_reduce_patience,
verbose=True,
min_lr=tr_arg.lr_clip)
bnm_sched = None
elif optim_name == 'pct':
pass
optimizer = torch.optim.Adam(
model.parameters(),
lr=tr_arg.learning_rate,
weight_decay=tr_arg.l2)
lr_sched = lr_scheduler.CosineAnnealingLR(
optimizer,
tr_arg.num_epochs,
eta_min=tr_arg.learning_rate)
bnm_sched = None
else:
assert False
return optimizer, lr_sched, bnm_sched
def entry_train(cfg, resume=False, model_path=""):
loader_train = create_dataloader(split='train', cfg=cfg)
loader_valid = create_dataloader(split='valid', cfg=cfg)
loader_test = create_dataloader(split='test', cfg=cfg)
model = get_model(cfg)
model.to(DEVICE)
print(model)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
optimizer, lr_sched, bnm_sched = get_optimizer(cfg.EXP.OPTIMIZER, cfg.TRAIN, model)
if resume:
model = load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path)
else:
assert model_path == ""
log_dir = f"./runs/{cfg.EXP.EXP_ID}"
if not os.path.exists(log_dir):
os.makedirs(log_dir)
tb = TensorboardManager(log_dir)
track_train = TrackTrain(early_stop_patience=cfg.TRAIN.early_stop)
epsilons = torch.zeros(len(loader_train.dataset))
for epoch in range(cfg.TRAIN.num_epochs):
print(f'Epoch {epoch}')
print('Training..')
train_perf, train_loss = train(cfg.EXP.TASK, loader_train, model, optimizer, cfg.EXP.LOSS_NAME, cfg.EXP.DATASET, cfg, epoch, epsilons)
pprint.pprint(train_perf, width=80)
tb.update('train', epoch, train_perf)
if (not cfg.EXP_EXTRA.no_val) and epoch % cfg.EXP_EXTRA.val_eval_freq == 0:
print('\nValidating..')
val_perf = validate(cfg.EXP.TASK, loader_valid, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(val_perf, width=80)
tb.update('val', epoch, val_perf)
else:
val_perf = defaultdict(float)
if (not cfg.EXP_EXTRA.no_test) and (epoch % cfg.EXP_EXTRA.test_eval_freq == 0):
print('\nTesting..')
test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(test_perf, width=80)
tb.update('test', epoch, test_perf)
else:
test_perf = defaultdict(float)
if cfg.EXP_EXTRA.robust_test:
print('\nRobust Testing..')
test_perf = robust_validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.LOSS_NAME, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(test_perf, width=80)
tb.update('test', epoch, test_perf)
track_train.record_epoch(
epoch_id=epoch,
train_metric=get_metric_from_perf(cfg.EXP.TASK, train_perf, cfg.EXP.METRIC),
val_metric=get_metric_from_perf(cfg.EXP.TASK, val_perf, cfg.EXP.METRIC),
test_metric=get_metric_from_perf(cfg.EXP.TASK, test_perf, cfg.EXP.METRIC))
if (not cfg.EXP_EXTRA.no_val) and track_train.save_model(epoch_id=epoch, split='val'):
print('Saving best model on the validation set')
save_checkpoint('best_val', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if (not cfg.EXP_EXTRA.no_test) and track_train.save_model(epoch_id=epoch, split='test'):
print('Saving best model on the test set')
save_checkpoint('best_test', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if (not cfg.EXP_EXTRA.no_val) and track_train.early_stop(epoch_id=epoch):
print(f"Early stopping at {epoch} as val acc did not improve for {cfg.TRAIN.early_stop} epochs.")
break
if (not (cfg.EXP_EXTRA.save_ckp == 0)) and (epoch % cfg.EXP_EXTRA.save_ckp == 0):
save_checkpoint(f'{epoch}', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
if cfg.EXP.OPTIMIZER == 'vanilla':
assert bnm_sched is None
lr_sched.step(train_loss)
else:
lr_sched.step()
print('Saving the final model')
save_checkpoint('final', epoch, model, optimizer, lr_sched, bnm_sched, test_perf, cfg)
print('\nTesting on the final model..')
last_test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT)
pprint.pprint(last_test_perf, width=80)
tb.close()
def entry_test(cfg, test_or_valid, model_path="", confusion = False):
split = "test" if test_or_valid else "valid"
loader_test = create_dataloader(split=split, cfg=cfg)
model = get_model(cfg)
model.to(DEVICE)
print(model)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
optimizer, lr_sched, bnm_sched = get_optimizer(cfg.EXP.OPTIMIZER, cfg.TRAIN, model)
model = load_model_opt_sched(model, optimizer, lr_sched, bnm_sched, model_path)
model.eval()
if confusion:
test_perf, pred, ground = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT, confusion)
print(pred.shape, ground.shape)
#### some hardcoding #######
np.save('./output/' + cfg.EXP.MODEL_NAME + '_' + cfg.DATALOADER.MODELNET40_C.corruption + '_' + str(cfg.DATALOADER.MODELNET40_C.severity) + '_pred.npy',pred )
np.save('./output/' + cfg.EXP.MODEL_NAME + '_' + cfg.DATALOADER.MODELNET40_C.corruption + '_' + str(cfg.DATALOADER.MODELNET40_C.severity) + '_ground.npy',ground)
#### #### #### #### #### ####
else:
test_perf = validate(cfg.EXP.TASK, loader_test, model, cfg.EXP.DATASET, cfg.ADAPT, confusion)
print("Model: {} Corruption: {} Severity: {} Acc: {} Class Acc: {}".format(cfg.EXP.MODEL_NAME, cfg.DATALOADER.MODELNET40_C.corruption, cfg.DATALOADER.MODELNET40_C.severity,test_perf['acc'],test_perf['class_acc']),file=file_object,flush=True)
pprint.pprint(test_perf, width=80)
return test_perf
def rscnn_vote_evaluation(cfg, model_path, log_file):
model = get_model(cfg)
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
print("WARNING: using dataparallel to load data")
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
print(f"Checkpoint loaded from {model_path}")
model.to(DEVICE)
model.eval()
assert cfg.EXP.DATASET in ["modelnet40_rscnn"]
loader_test = create_dataloader(split='test', cfg=cfg)
rscnn_voting_evaluate_cls(
loader=loader_test,
model=model,
data_batch_to_points_target=lambda x: (x['pc'], x['label']),
points_to_inp=lambda x: {'pc': x},
out_to_prob=lambda x: F.softmax(x['logit'], dim=1),
log_file=log_file
)
def pn2_vote_evaluation(cfg, model_path, log_file):
assert cfg.EXP.DATASET in ["modelnet40_pn2"]
loader_test = create_dataloader(split='test', cfg=cfg)
model = get_model(cfg)
checkpoint = torch.load(model_path)
try:
model.load_state_dict(checkpoint['model_state'])
except:
print("WARNING: using dataparallel to load data")
model = nn.DataParallel(model)
model.load_state_dict(checkpoint['model_state'])
print(f"Checkpoint loaded from {model_path}")
model.to(DEVICE)
model.eval()
pn2_vote_evaluate_cls(loader_test, model, log_file)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.set_defaults(entry=lambda cmd_args: parser.print_help())
parser.add_argument('--entry', type=str, default="train")
parser.add_argument('--exp-config', type=str, default="")
parser.add_argument('--model-path', type=str, default="")
parser.add_argument('--resume', action="store_true", default=False)
# parser.add_argument('--gpu',type=str,default='0',
# help="Which gpu to use")
parser.add_argument('--corruption',type=str,default='uniform',
help="Which corruption to use")
parser.add_argument('--output',type=str,default='./test.txt',
help="path to output file")
parser.add_argument('--severity',type=int,default=1,
help="Which severity to use")
parser.add_argument('--attack_steps',type=int,default=7,
help="Which severity to use")
parser.add_argument('--attack_eps',type=float,default=0.08,
help="Which severity to use")
parser.add_argument('--attack_lr',type=int,default=2,
help="Which severity to use")
parser.add_argument('--warmup',type=int,default=10,
help="Which severity to use")
parser.add_argument('--gamma',type=float,default=0.04,
help="Which severity to use")
parser.add_argument('--beta',type=float,default=0.1,
help="Which severity to use")
parser.add_argument('--confusion', action="store_true", default=False,
help="whether to output confusion matrix data")
# "attack_steps": 10,
# "attack_eps": 8,
# "attack_lr": 2,
# "warmup": 10,
# "mode": "train_adaptive",
# "gamma": 1.9,
# "beta": 0.1
cmd_args = parser.parse_args()
# os.environ['CUDA_VISIBLE_DEVICES'] = cmd_args.gpu
if cmd_args.entry == "train":
assert not cmd_args.exp_config == ""
if not cmd_args.resume:
assert cmd_args.model_path == ""
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
if cfg.EXP.EXP_ID == "":
cfg.EXP.EXP_ID = str(datetime.now())[:-7].replace(' ', '-')
cfg.freeze()
print(cfg)
random.seed(cfg.EXP.SEED)
np.random.seed(cfg.EXP.SEED)
torch.manual_seed(cfg.EXP.SEED)
entry_train(cfg, cmd_args.resume, cmd_args.model_path)
elif cmd_args.entry in ["test", "valid"]:
file_object = open(cmd_args.output, 'a')
assert not cmd_args.exp_config == ""
assert not cmd_args.model_path == ""
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
if cfg.EXP.DATASET == "modelnet40_c":
cfg.DATALOADER.MODELNET40_C.corruption = cmd_args.corruption
cfg.DATALOADER.MODELNET40_C.severity = cmd_args.severity
cfg.freeze()
print(cfg)
random.seed(cfg.EXP.SEED)
np.random.seed(cfg.EXP.SEED)
torch.manual_seed(cfg.EXP.SEED)
test_or_valid = cmd_args.entry == "test"
entry_test(cfg, test_or_valid, cmd_args.model_path,cmd_args.confusion)
elif cmd_args.entry in ["rscnn_vote", "pn2_vote"]:
assert not cmd_args.exp_config == ""
assert not cmd_args.model_path == ""
log_file = f"vote_log/{cmd_args.model_path.replace('/', '_')}_{cmd_args.entry.replace('/', '_')}.log"
cfg = get_cfg_defaults()
cfg.merge_from_file(cmd_args.exp_config)
cfg.freeze()
print(cfg)
seed = cfg.EXP.SEED
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
if cmd_args.entry == "rscnn_vote":
rscnn_vote_evaluation(cfg, cmd_args.model_path, log_file)
elif cmd_args.entry == "pn2_vote":
pn2_vote_evaluation(cfg, cmd_args.model_path, log_file)
else:
assert False
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
1
https://gitee.com/cuge1995/ModelNet40-C.git
git@gitee.com:cuge1995/ModelNet40-C.git
cuge1995
ModelNet40-C
ModelNet40-C
master

搜索帮助

0d507c66 1850385 C8b1a773 1850385