代码拉取完成,页面将自动刷新
#ifndef NSGA3_H_
#define NSGA3_H_
#include "global.h"
#include "individual.h"
#include "refpoint.h"
#include "recombination.h"
#include "common.h"
#include <iomanip>
class TNSGA3 {
public:
TNSGA3();
virtual ~TNSGA3();
int popsize; // 种群大小
vector<TIndividual> parent_pop; // 父代种群
vector<TIndividual> child_pop; // 子代种群
vector<TIndividual> mixed_pop; // 组合种群
vector<TRefpoint> refepoints; // 参考点集合
void init_population(); // 初始化种群
void init_refpoints2D(); // 初始化二维参考点集合
void init_refpointsND(); // 生成多维参考点集合
void gen_refpointsND(vector<TRefpoint>* rps, TRefpoint* rp, size_t left, size_t count);
void merge_populations(); // 合并父代和子代种群
void update_idealpoint(TIndividual& indv);
void run(size_t ngen, size_t run);
void evolution();
TParetofront::TPfronts nondominatedsort();
void normalize(TParetofront::TPfronts Fronts);
void associate(TParetofront::TPfronts Fronts);
void niching();
void save_front(char file_name[512]);
};
TNSGA3::TNSGA3() {
popsize = 0;
idealpoint = new double[numObjectives];
nadirpoint = new double[numObjectives];
for (int i = 0; i < numObjectives; i++) {
idealpoint[i] = MAX_DOUBLE;
nadirpoint[i] = MIN_DOUBLE;
}
}
TNSGA3::~TNSGA3() {
delete[] idealpoint;
}
// 为 2 个物镜初始化一组均匀分布的权重向量
void TNSGA3::init_refpoints2D()
{
for (size_t i = 0; i <= nrefpoints_2D; i++) {
TRefpoint rpoint;
vector<size_t> array;
array.push_back(i);
array.push_back(nrefpoints_2D - i);
for (size_t j = 0; j < array.size(); j++)
rpoint.refpoint.push_back(1.0 * array[j] / nrefpoints_2D);
refepoints.push_back(rpoint);
}
}
// 为 大于2 个目标初始化一组均匀分布的权重向量
void TNSGA3::init_refpointsND()
{
TRefpoint rpoint(numObjectives);
gen_refpointsND(&refepoints, &rpoint, p_boundary, 0);
if (p_inside > 0) {
vector<TRefpoint> inside_rps; // inside reference points
gen_refpointsND(&refepoints, &rpoint, p_inside, 0);
double center = 1.0 / numObjectives;
for (size_t i = 0; i < inside_rps.size(); ++i) {
for (size_t j = 0; j < numObjectives; ++j)
inside_rps[i].refpoint[j] = (center + inside_rps[i].refpoint[j]) / 2;
refepoints.push_back(inside_rps[i]);
}
}
}
// 为 <2 个生成一组均匀分布的权重向量
void TNSGA3::gen_refpointsND(vector<TRefpoint>* rps, TRefpoint* rp, size_t left, size_t count)
{
if (count == numObjectives - 1) {
rp->refpoint[count] = 1.0 * left / p_boundary;
rps->push_back(*rp);
}
else {
for (size_t i = 0; i <= left; ++i) {
rp->refpoint[count] = 1.0 * i / p_boundary;
gen_refpointsND(rps, rp, left - i, count + 1);
}
}
}
void TNSGA3::init_population()
{
for (size_t i = 0; i < popsize; ++i) {
TIndividual indv;
indv.init_individual();
indv.eval_objective();
parent_pop.push_back(indv);
}
}
void TNSGA3::merge_populations()
{
for (size_t i = 0; i < popsize; ++i)
mixed_pop.push_back(parent_pop[i]);
for (size_t i = 0, j = popsize; i < popsize; ++i, j++)
mixed_pop.push_back(child_pop[j]);
}
TParetofront::TPfronts TNSGA3::nondominatedsort()
{
int rank = 1, count = 0;
vector<int> ranks(mixed_pop.size(), 0);
TParetofront::TPfronts fronts;
while (count < mixed_pop.size()) {
TParetofront::TPFront cfront;
for (size_t i = 0; i < mixed_pop.size(); ++i) {
if (ranks[i] > 0)
continue;
bool isdominated = false;
for (size_t j = 0; j < cfront.size(); ++j) {
if (mixed_pop[cfront[j]] < mixed_pop[i]) {
isdominated = true;
break;
}
else if (mixed_pop[i] < mixed_pop[cfront[j]]) {
cfront.erase(cfront.begin() + j);
j = j - 1;
}
}
if (!isdominated) cfront.push_back(i);
}
for (size_t i = 0; i < cfront.size(); ++i) ranks[cfront[i]] = rank;
fronts.push_back(cfront);
count += cfront.size();
rank++;
}
// 识别最后一个前端索引 (FIDX)
int fidx = 0, block = 0;
while (block < popsize) block += fronts[fidx++].size();
// 删除无用的fronts
fronts.erase(fronts.begin() + fidx, fronts.end());
return fronts;
}
void TNSGA3::normalize(TParetofront::TPfronts Fronts) {
// 计算理想点
for (size_t i = 0; i < Fronts[0].size(); ++i) {
size_t idx = Fronts[0][i];
for (size_t j = 0; j < numObjectives; ++j) {
if (mixed_pop[idx].y_obj[j] < idealpoint[j])
idealpoint[j] = mixed_pop[idx].y_obj[j];
}
}
// 计算最低点
for (size_t i = 0; i < Fronts.size(); ++i) {
for (size_t j = 0; j < Fronts[i].size(); ++j) {
size_t idx = Fronts[i][j];
for (size_t k = 0; k < numObjectives; ++k) {
if (mixed_pop[idx].y_obj[k] > nadirpoint[k])
nadirpoint[k] = mixed_pop[idx].y_obj[k];
}
}
}
// 归一化化目标
for (size_t i = 0; i < Fronts.size(); ++i)
for (size_t j = 0; j < Fronts[i].size(); ++j)
mixed_pop[Fronts[i][j]].norm_objective();
}
void TNSGA3::associate(TParetofront::TPfronts Fronts)
{
for (size_t i = 0; i < refepoints.size(); ++i)
refepoints[i].clear_refpoint();
for (size_t i = 0; i < Fronts.size(); ++i) {
for (size_t j = 0; j < Fronts[i].size(); ++j) {
double mindist = MAX_DOUBLE;
size_t idx = refepoints.size();
for (size_t r = 0; r < refepoints.size(); ++r) {
double pdist = perpendicular_distance(refepoints[r].refpoint,
mixed_pop[Fronts[i][j]].n_obj);
if (pdist < mindist) {
mindist = pdist;
idx = r;
}
}
if (i + 1 == Fronts.size())
refepoints[idx].add_member(Fronts[i][j], mindist);
else
refepoints[idx].sum_member();
}
}
}
void TNSGA3::niching()
{
vector<bool> rp_isable(refepoints.size(), true);
while (parent_pop.size() < popsize) {
size_t rp_idx = find_refpoint(refepoints, rp_isable);
int ind_idx = select_member(refepoints[rp_idx]);
if (ind_idx < 0) rp_isable[rp_idx] = false;
else {
refepoints[rp_idx].sum_member();
refepoints[rp_idx].remove_member(ind_idx);
parent_pop.push_back(mixed_pop[ind_idx]);
}
}
}
void TNSGA3::evolution()
{
child_pop.clear(); // 清理子代种群
for (size_t i = 0; i < popsize; ++i) {
int p1 = int(popsize * rnd_uni(&rnd_uni_init));
int p2 = int(popsize * rnd_uni(&rnd_uni_init));
TIndividual child1, child2;
realbinarycrossover(parent_pop[p1], parent_pop[p2], child1, child2);
realmutation(child1, 1.0 / numVariables);
realmutation(child2, 1.0 / numVariables);
child1.eval_objective();
child2.eval_objective();
child_pop.push_back(child1);
child_pop.push_back(child2);
}
// mixed_pop: 父子代种群组合
mixed_pop.clear();
merge_populations();
// 非支配排序算法
TParetofront::TPfronts Fronts = nondominatedsort();
// 将前 F-1 个前沿的个体复制到下一代种群中
parent_pop.clear();
for (int i = 0; i < Fronts.size() - 1; ++i)
for (int j = 0; j < Fronts[i].size(); ++j)
parent_pop.push_back(mixed_pop[Fronts[i][j]]);
// 如果种群已经完整,则结束
if (parent_pop.size() == popsize) return;
// 对目标进行归一化(算法2:normalize 函数)
normalize(Fronts);
// 成员关联(算法3:associate 函数)
associate(Fronts);
// 选择 k 个个体(算法4:niching 函数)
niching();
}
void TNSGA3::run(size_t ngen, size_t run) {
if (numObjectives == 2) init_refpoints2D();
else init_refpointsND();
popsize = refepoints.size();//将种群规模设置为与参考点数量相等
while (popsize % 4) popsize++; // 人口规模必须是 4 的倍数
init_population();
for (size_t g = 0; g < ngen; ++g) evolution();
char file_name[512];
sprintf_s(file_name, "ParetoFront/NSGA3_%s_%dD_R%lu.data", strTestInstance, numObjectives, run);
save_front(file_name);
parent_pop.clear();
}
void TNSGA3::save_front(char file_name[512])
{
std::fstream fout;
fout.open(file_name, std::ios::out);
// 设置输出精度为小数点后四位
fout << std::fixed << std::setprecision(4);
for (size_t i = 0; i < parent_pop.size(); i++) {
for (int j = 0; j < numObjectives; j++) {
fout << parent_pop[i].y_obj[j] << "\t";
if (j == numObjectives - 1) {
fout << "\n";
}
}
}
fout.close();
}
#endif /* NSGA3_H_ */
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。