1 Star 0 Fork 154

广州卡桑信息技术有限公司/fatigue_detecting

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
main_UI.py 28.40 KB
一键复制 编辑 原始数据 按行查看 历史
cungudafa 提交于 2019-12-25 23:27 . UI界面
# -*- coding: utf-8 -*-
import dlib # 人脸识别的库dlib
import numpy as np # 数据处理的库numpy
import cv2 # 图像处理的库OpenCv
import wx # 构造显示界面的GUI
import wx.xrc
import wx.adv
# import the necessary packages
from scipy.spatial import distance as dist
from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
import numpy as np # 数据处理的库 numpy
import argparse
import imutils
import datetime,time
import math
import os
###########################################################################
## Class Fatigue_detecting
###########################################################################
COVER = 'D:/myworkspace/JupyterNotebook/fatigue_detecting/images/camera.png'
class Fatigue_detecting(wx.Frame):
def __init__( self, parent, title ):
wx.Frame.__init__ ( self, parent, id = wx.ID_ANY, title = title, pos = wx.DefaultPosition, size = wx.Size( 873,535 ), style = wx.DEFAULT_FRAME_STYLE|wx.TAB_TRAVERSAL )
self.SetSizeHints( wx.DefaultSize, wx.DefaultSize )
self.SetBackgroundColour( wx.SystemSettings.GetColour( wx.SYS_COLOUR_MENU ) )
bSizer1 = wx.BoxSizer( wx.VERTICAL )
bSizer2 = wx.BoxSizer( wx.HORIZONTAL )
bSizer3 = wx.BoxSizer( wx.VERTICAL )
self.m_animCtrl1 = wx.adv.AnimationCtrl( self, wx.ID_ANY, wx.adv.NullAnimation, wx.DefaultPosition, wx.DefaultSize, wx.adv.AC_DEFAULT_STYLE )
bSizer3.Add( self.m_animCtrl1, 1, wx.ALL|wx.EXPAND, 5 )
bSizer2.Add( bSizer3, 9, wx.EXPAND, 5 )
bSizer4 = wx.BoxSizer( wx.VERTICAL )
sbSizer1 = wx.StaticBoxSizer( wx.StaticBox( self, wx.ID_ANY, u"参数设置" ), wx.VERTICAL )
sbSizer2 = wx.StaticBoxSizer( wx.StaticBox( sbSizer1.GetStaticBox(), wx.ID_ANY, u"视频源" ), wx.VERTICAL )
gSizer1 = wx.GridSizer( 0, 2, 0, 8 )
m_choice1Choices = [ u"摄像头ID_0", u"摄像头ID_1", u"摄像头ID_2" ]
self.m_choice1 = wx.Choice( sbSizer2.GetStaticBox(), wx.ID_ANY, wx.DefaultPosition, wx.Size( 90,25 ), m_choice1Choices, 0 )
self.m_choice1.SetSelection( 0 )
gSizer1.Add( self.m_choice1, 0, wx.ALL, 5 )
self.camera_button1 = wx.Button( sbSizer2.GetStaticBox(), wx.ID_ANY, u"开始检测", wx.DefaultPosition, wx.Size( 90,25 ), 0 )
gSizer1.Add( self.camera_button1, 0, wx.ALL, 5 )
self.vedio_button2 = wx.Button( sbSizer2.GetStaticBox(), wx.ID_ANY, u"打开视频文件", wx.DefaultPosition, wx.Size( 90,25 ), 0 )
gSizer1.Add( self.vedio_button2, 0, wx.ALL, 5 )
self.off_button3 = wx.Button( sbSizer2.GetStaticBox(), wx.ID_ANY, u"暂停", wx.DefaultPosition, wx.Size( 90,25 ), 0 )
gSizer1.Add( self.off_button3, 0, wx.ALL, 5 )
sbSizer2.Add( gSizer1, 1, wx.EXPAND, 5 )
sbSizer1.Add( sbSizer2, 2, wx.EXPAND, 5 )
sbSizer3 = wx.StaticBoxSizer( wx.StaticBox( sbSizer1.GetStaticBox(), wx.ID_ANY, u"疲劳检测" ), wx.VERTICAL )
bSizer5 = wx.BoxSizer( wx.HORIZONTAL )
self.yawn_checkBox1 = wx.CheckBox( sbSizer3.GetStaticBox(), wx.ID_ANY, u"打哈欠检测", wx.Point( -1,-1 ), wx.Size( -1,15 ), 0 )
self.yawn_checkBox1.SetValue(True)
bSizer5.Add( self.yawn_checkBox1, 0, wx.ALL, 5 )
self.blink_checkBox2 = wx.CheckBox( sbSizer3.GetStaticBox(), wx.ID_ANY, u"闭眼检测", wx.Point( -1,-1 ), wx.Size( -1,15 ), 0 )
self.blink_checkBox2.SetValue(True)
bSizer5.Add( self.blink_checkBox2, 0, wx.ALL, 5 )
sbSizer3.Add( bSizer5, 1, wx.EXPAND, 5 )
bSizer6 = wx.BoxSizer( wx.HORIZONTAL )
self.nod_checkBox7 = wx.CheckBox( sbSizer3.GetStaticBox(), wx.ID_ANY, u"点头检测", wx.Point( -1,-1 ), wx.Size( -1,15 ), 0 )
self.nod_checkBox7.SetValue(True)
bSizer6.Add( self.nod_checkBox7, 0, wx.ALL, 5 )
self.m_staticText1 = wx.StaticText( sbSizer3.GetStaticBox(), wx.ID_ANY, u"疲劳时间(秒):", wx.DefaultPosition, wx.Size( -1,15 ), 0 )
self.m_staticText1.Wrap( -1 )
bSizer6.Add( self.m_staticText1, 0, wx.ALL, 5 )
m_listBox2Choices = [ u"3", u"4", u"5", u"6", u"7", u"8" ]
self.m_listBox2 = wx.ListBox( sbSizer3.GetStaticBox(), wx.ID_ANY, wx.DefaultPosition, wx.Size( 50,24 ), m_listBox2Choices, 0 )
bSizer6.Add( self.m_listBox2, 0, 0, 5 )
sbSizer3.Add( bSizer6, 1, wx.EXPAND, 5 )
sbSizer1.Add( sbSizer3, 2, 0, 5 )
sbSizer4 = wx.StaticBoxSizer( wx.StaticBox( sbSizer1.GetStaticBox(), wx.ID_ANY, u"脱岗检测" ), wx.VERTICAL )
bSizer8 = wx.BoxSizer( wx.HORIZONTAL )
self.m_checkBox4 = wx.CheckBox( sbSizer4.GetStaticBox(), wx.ID_ANY, u"脱岗检测", wx.DefaultPosition, wx.Size( -1,15 ), 0 )
self.m_checkBox4.SetValue(True)
bSizer8.Add( self.m_checkBox4, 0, wx.ALL, 5 )
self.m_staticText2 = wx.StaticText( sbSizer4.GetStaticBox(), wx.ID_ANY, u"脱岗时间(秒):", wx.DefaultPosition, wx.Size( -1,15 ), 0 )
self.m_staticText2.Wrap( -1 )
bSizer8.Add( self.m_staticText2, 0, wx.ALL, 5 )
m_listBox21Choices = [ u"5", u"10", u"15", u"20", u"25", u"30" ]
self.m_listBox21 = wx.ListBox( sbSizer4.GetStaticBox(), wx.ID_ANY, wx.DefaultPosition, wx.Size( 50,24 ), m_listBox21Choices, 0 )
bSizer8.Add( self.m_listBox21, 0, 0, 5 )
sbSizer4.Add( bSizer8, 1, 0, 5 )
sbSizer1.Add( sbSizer4, 1, 0, 5 )
sbSizer5 = wx.StaticBoxSizer( wx.StaticBox( sbSizer1.GetStaticBox(), wx.ID_ANY, u"分析区域" ), wx.VERTICAL )
bSizer9 = wx.BoxSizer( wx.HORIZONTAL )
self.m_staticText3 = wx.StaticText( sbSizer5.GetStaticBox(), wx.ID_ANY, u"检测区域: ", wx.DefaultPosition, wx.DefaultSize, 0 )
self.m_staticText3.Wrap( -1 )
bSizer9.Add( self.m_staticText3, 0, wx.ALL, 5 )
m_choice2Choices = [ u"全视频检测", u"部分区域选取" ]
self.m_choice2 = wx.Choice( sbSizer5.GetStaticBox(), wx.ID_ANY, wx.DefaultPosition, wx.DefaultSize, m_choice2Choices, 0 )
self.m_choice2.SetSelection( 0 )
bSizer9.Add( self.m_choice2, 0, wx.ALL, 5 )
sbSizer5.Add( bSizer9, 1, wx.EXPAND, 5 )
sbSizer1.Add( sbSizer5, 1, 0, 5 )
sbSizer6 = wx.StaticBoxSizer( wx.StaticBox( sbSizer1.GetStaticBox(), wx.ID_ANY, u"状态输出" ), wx.VERTICAL )
self.m_textCtrl3 = wx.TextCtrl( sbSizer6.GetStaticBox(), wx.ID_ANY, wx.EmptyString, wx.DefaultPosition, wx.DefaultSize, wx.TE_MULTILINE|wx.TE_READONLY )
sbSizer6.Add( self.m_textCtrl3, 1, wx.ALL|wx.EXPAND, 5 )
sbSizer1.Add( sbSizer6, 5, wx.EXPAND, 5 )
bSizer4.Add( sbSizer1, 1, wx.EXPAND, 5 )
bSizer2.Add( bSizer4, 3, wx.EXPAND, 5 )
bSizer1.Add( bSizer2, 1, wx.EXPAND, 5 )
self.SetSizer( bSizer1 )
self.Layout()
self.Centre( wx.BOTH )
# Connect Events
self.m_choice1.Bind( wx.EVT_CHOICE, self.cameraid_choice )#绑定事件
self.camera_button1.Bind( wx.EVT_BUTTON, self.camera_on )#开
self.vedio_button2.Bind( wx.EVT_BUTTON, self.vedio_on )
self.off_button3.Bind( wx.EVT_BUTTON, self.off )#关
self.m_listBox2.Bind( wx.EVT_LISTBOX, self.AR_CONSEC_FRAMES )# 闪烁阈值设置
self.m_listBox21.Bind( wx.EVT_LISTBOX, self.OUT_AR_CONSEC_FRAMES )# 脱岗时间设置
# 封面图片
self.image_cover = wx.Image(COVER, wx.BITMAP_TYPE_ANY)
# 显示图片在m_animCtrl1上
self.bmp = wx.StaticBitmap(self.m_animCtrl1, -1, wx.Bitmap(self.image_cover))
# 设置窗口标题的图标
self.icon = wx.Icon('./images/123.ico', wx.BITMAP_TYPE_ICO)
self.SetIcon(self.icon)
# 系统事件
self.Bind(wx.EVT_CLOSE, self.OnClose)
print("wxpython界面初始化加载完成!")
"""参数"""
# 默认为摄像头0
self.VIDEO_STREAM = 0
self.CAMERA_STYLE = False # False未打开摄像头,True摄像头已打开
# 闪烁阈值(秒)
self.AR_CONSEC_FRAMES_check = 3
self.OUT_AR_CONSEC_FRAMES_check = 5
# 眼睛长宽比
self.EYE_AR_THRESH = 0.2
self.EYE_AR_CONSEC_FRAMES = self.AR_CONSEC_FRAMES_check
# 打哈欠长宽比
self.MAR_THRESH = 0.5
self.MOUTH_AR_CONSEC_FRAMES = self.AR_CONSEC_FRAMES_check
# 瞌睡点头
self.HAR_THRESH = 0.3
self.NOD_AR_CONSEC_FRAMES = self.AR_CONSEC_FRAMES_check
"""计数"""
# 初始化帧计数器和眨眼总数
self.COUNTER = 0
self.TOTAL = 0
# 初始化帧计数器和打哈欠总数
self.mCOUNTER = 0
self.mTOTAL = 0
# 初始化帧计数器和点头总数
self.hCOUNTER = 0
self.hTOTAL = 0
# 离职时间长度
self.oCOUNTER = 0
"""姿态"""
# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp
self.object_pts = np.float32([[6.825897, 6.760612, 4.402142], #33左眉左上角
[1.330353, 7.122144, 6.903745], #29左眉右角
[-1.330353, 7.122144, 6.903745], #34右眉左角
[-6.825897, 6.760612, 4.402142], #38右眉右上角
[5.311432, 5.485328, 3.987654], #13左眼左上角
[1.789930, 5.393625, 4.413414], #17左眼右上角
[-1.789930, 5.393625, 4.413414], #25右眼左上角
[-5.311432, 5.485328, 3.987654], #21右眼右上角
[2.005628, 1.409845, 6.165652], #55鼻子左上角
[-2.005628, 1.409845, 6.165652], #49鼻子右上角
[2.774015, -2.080775, 5.048531], #43嘴左上角
[-2.774015, -2.080775, 5.048531],#39嘴右上角
[0.000000, -3.116408, 6.097667], #45嘴中央下角
[0.000000, -7.415691, 4.070434]])#6下巴角
# 相机坐标系(XYZ):添加相机内参
self.K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]
self.D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]
# 像素坐标系(xy):填写凸轮的本征和畸变系数
self.cam_matrix = np.array(self.K).reshape(3, 3).astype(np.float32)
self.dist_coeffs = np.array(self.D).reshape(5, 1).astype(np.float32)
# 重新投影3D点的世界坐标轴以验证结果姿势
self.reprojectsrc = np.float32([[10.0, 10.0, 10.0],
[10.0, 10.0, -10.0],
[10.0, -10.0, -10.0],
[10.0, -10.0, 10.0],
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 绘制正方体12轴
self.line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]]
def __del__( self ):
pass
def get_head_pose(self,shape):# 头部姿态估计
# (像素坐标集合)填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/
# 17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
# 45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角
image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
shape[39], shape[42], shape[45], shape[31], shape[35],
shape[48], shape[54], shape[57], shape[8]])
# solvePnP计算姿势——求解旋转和平移矩阵:
# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。
_, rotation_vec, translation_vec = cv2.solvePnP(self.object_pts, image_pts, self.cam_matrix, self.dist_coeffs)
# projectPoints重新投影误差:原2d点和重投影2d点的距离(输入3d点、相机内参、相机畸变、r、t,输出重投影2d点)
reprojectdst, _ = cv2.projectPoints(self.reprojectsrc, rotation_vec, translation_vec, self.cam_matrix,self.dist_coeffs)
reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示
# 计算欧拉角calc euler angle
# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrix
rotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)
pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接
# decomposeProjectionMatrix将投影矩阵分解为旋转矩阵和相机矩阵
_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)
pitch, yaw, roll = [math.radians(_) for _ in euler_angle]
pitch = math.degrees(math.asin(math.sin(pitch)))
roll = -math.degrees(math.asin(math.sin(roll)))
yaw = math.degrees(math.asin(math.sin(yaw)))
#print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))
return reprojectdst, euler_angle# 投影误差,欧拉角
def eye_aspect_ratio(self,eye):
# 垂直眼标志(X,Y)坐标
A = dist.euclidean(eye[1], eye[5])# 计算两个集合之间的欧式距离
B = dist.euclidean(eye[2], eye[4])
# 计算水平之间的欧几里得距离
# 水平眼标志(X,Y)坐标
C = dist.euclidean(eye[0], eye[3])
# 眼睛长宽比的计算
ear = (A + B) / (2.0 * C)
# 返回眼睛的长宽比
return ear
def mouth_aspect_ratio(self,mouth):# 嘴部
A = np.linalg.norm(mouth[2] - mouth[9]) # 51, 59
B = np.linalg.norm(mouth[4] - mouth[7]) # 53, 57
C = np.linalg.norm(mouth[0] - mouth[6]) # 49, 55
mar = (A + B) / (2.0 * C)
return mar
def _learning_face(self,event):
"""dlib的初始化调用"""
# 使用人脸检测器get_frontal_face_detector
self.detector = dlib.get_frontal_face_detector()
# dlib的68点模型,使用作者训练好的特征预测器
self.predictor = dlib.shape_predictor("D:/myworkspace/JupyterNotebook/fatigue_detecting/model/shape_predictor_68_face_landmarks.dat")
self.m_textCtrl3.AppendText(u"加载模型成功!!!\n")
# 分别获取左右眼面部标志的索引
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
(mStart, mEnd) = face_utils.FACIAL_LANDMARKS_IDXS["mouth"]
#建cv2摄像头对象,这里使用电脑自带摄像头,如果接了外部摄像头,则自动切换到外部摄像头
self.cap = cv2.VideoCapture(self.VIDEO_STREAM)
if self.cap.isOpened()==True:# 返回true/false 检查初始化是否成功
self.CAMERA_STYLE = True
self.m_textCtrl3.AppendText(u"打开摄像头成功!!!\n")
else:
self.m_textCtrl3.AppendText(u"摄像头打开失败!!!\n")
#显示封面图
self.bmp.SetBitmap(wx.Bitmap(self.image_cover))
# 成功打开视频,循环读取视频流
while(self.cap.isOpened()):
# cap.read()
# 返回两个值:
# 一个布尔值true/false,用来判断读取视频是否成功/是否到视频末尾
# 图像对象,图像的三维矩阵
flag, im_rd = self.cap.read()
# 取灰度
img_gray = cv2.cvtColor(im_rd, cv2.COLOR_RGB2GRAY)
# 使用人脸检测器检测每一帧图像中的人脸。并返回人脸数faces
faces = self.detector(img_gray, 0)
# 如果检测到人脸
if(len(faces)!=0):
# enumerate方法同时返回数据对象的索引和数据,k为索引,d为faces中的对象
for k, d in enumerate(faces):
# 用红色矩形框出人脸
cv2.rectangle(im_rd, (d.left(), d.top()), (d.right(), d.bottom()), (0, 0, 255),1)
# 使用预测器得到68点数据的坐标
shape = self.predictor(im_rd, d)
# 圆圈显示每个特征点
for i in range(68):
cv2.circle(im_rd, (shape.part(i).x, shape.part(i).y), 2, (0, 255, 0), -1, 8)
# 将脸部特征信息转换为数组array的格式
shape = face_utils.shape_to_np(shape)
"""
打哈欠
"""
if self.yawn_checkBox1.GetValue()== True:
# 嘴巴坐标
mouth = shape[mStart:mEnd]
# 打哈欠
mar = self.mouth_aspect_ratio(mouth)
# 使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
mouthHull = cv2.convexHull(mouth)
cv2.drawContours(im_rd, [mouthHull], -1, (0, 255, 0), 1)
# 同理,判断是否打哈欠
if mar > self.MAR_THRESH:# 张嘴阈值0.5
self.mCOUNTER += 1
else:
# 如果连续3次都小于阈值,则表示打了一次哈欠
if self.mCOUNTER >= self.MOUTH_AR_CONSEC_FRAMES:# 阈值:3
self.mTOTAL += 1
#显示
cv2.putText(im_rd, "Yawning!", (10, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
self.m_textCtrl3.AppendText(time.strftime('%Y-%m-%d %H:%M ', time.localtime())+u"打哈欠\n")
# 重置嘴帧计数器
self.mCOUNTER = 0
cv2.putText(im_rd, "COUNTER: {}".format(self.mCOUNTER), (150, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(im_rd, "MAR: {:.2f}".format(mar), (300, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(im_rd, "Yawning: {}".format(self.mTOTAL), (450, 60),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
else:
pass
"""
眨眼
"""
if self.blink_checkBox2.GetValue()== True:
# 提取左眼和右眼坐标
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# 构造函数计算左右眼的EAR值,使用平均值作为最终的EAR
leftEAR = self.eye_aspect_ratio(leftEye)
rightEAR = self.eye_aspect_ratio(rightEye)
ear = (leftEAR + rightEAR) / 2.0
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
# 使用cv2.convexHull获得凸包位置,使用drawContours画出轮廓位置进行画图操作
cv2.drawContours(im_rd, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(im_rd, [rightEyeHull], -1, (0, 255, 0), 1)
# 循环,满足条件的,眨眼次数+1
if ear < self.EYE_AR_THRESH:# 眼睛长宽比:0.2
self.COUNTER += 1
else:
# 如果连续3次都小于阈值,则表示进行了一次眨眼活动
if self.COUNTER >= self.EYE_AR_CONSEC_FRAMES:# 阈值:3
self.TOTAL += 1
self.m_textCtrl3.AppendText(time.strftime('%Y-%m-%d %H:%M ', time.localtime())+u"眨眼\n")
# 重置眼帧计数器
self.COUNTER = 0
# 第十四步:进行画图操作,同时使用cv2.putText将眨眼次数进行显示
cv2.putText(im_rd, "Faces: {}".format(len(faces)), (10, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(im_rd, "COUNTER: {}".format(self.COUNTER), (150, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(im_rd, "EAR: {:.2f}".format(ear), (300, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(im_rd, "Blinks: {}".format(self.TOTAL), (450, 30),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
else:
pass
"""
瞌睡点头
"""
if self.nod_checkBox7.GetValue()== True:
# 获取头部姿态
reprojectdst, euler_angle = self.get_head_pose(shape)
har = euler_angle[0, 0]# 取pitch旋转角度
if har > self.HAR_THRESH:# 点头阈值0.3
self.hCOUNTER += 1
else:
# 如果连续3次都小于阈值,则表示瞌睡点头一次
if self.hCOUNTER >= self.NOD_AR_CONSEC_FRAMES:# 阈值:3
self.hTOTAL += 1
self.m_textCtrl3.AppendText(time.strftime('%Y-%m-%d %H:%M ', time.localtime())+u"瞌睡点头\n")
# 重置点头帧计数器
self.hCOUNTER = 0
# 绘制正方体12轴(视频流尺寸过大时,reprojectdst会超出int范围,建议压缩检测视频尺寸)
for start, end in self.line_pairs:
cv2.line(im_rd, reprojectdst[start], reprojectdst[end], (0, 0, 255))
# 显示角度结果
cv2.putText(im_rd, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (10, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 255, 0), thickness=2)# GREEN
cv2.putText(im_rd, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (150, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (255, 0, 0), thickness=2)# BLUE
cv2.putText(im_rd, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (300, 90), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)# RED
cv2.putText(im_rd, "Nod: {}".format(self.hTOTAL), (450, 90),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,255,0), 2)
else:
pass
#print('嘴巴实时长宽比:{:.2f} '.format(mar)+"\t是否张嘴:"+str([False,True][mar > self.MAR_THRESH]))
#print('眼睛实时长宽比:{:.2f} '.format(ear)+"\t是否眨眼:"+str([False,True][self.COUNTER>=1]))
else:
# 没有检测到人脸
self.oCOUNTER+=1
cv2.putText(im_rd, "No Face", (20, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255),3, cv2.LINE_AA)
if self.oCOUNTER >= self.OUT_AR_CONSEC_FRAMES_check:
self.m_textCtrl3.AppendText(time.strftime('%Y-%m-%d %H:%M ', time.localtime())+u"员工脱岗!!!\n")
self.oCOUNTER = 0
# 确定疲劳提示:眨眼50次,打哈欠15次,瞌睡点头30次
if self.TOTAL >= 50 or self.mTOTAL>=15 or self.hTOTAL>=30:
cv2.putText(im_rd, "SLEEP!!!", (100, 200),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 255), 3)
#self.m_textCtrl3.AppendText(u"疲劳")
# opencv中imread的图片内部是BGR排序,wxPython的StaticBitmap需要的图片是RGB排序,不转换会出现颜色变换
height,width = im_rd.shape[:2]
image1 = cv2.cvtColor(im_rd, cv2.COLOR_BGR2RGB)
pic = wx.Bitmap.FromBuffer(width,height,image1)
# 显示图片在panel上:
self.bmp.SetBitmap(pic)
# 释放摄像头
self.cap.release()
def camera_on(self,event):
"""使用多线程,子线程运行后台的程序,主线程更新前台的UI,这样不会互相影响"""
import _thread
# 创建子线程,按钮调用这个方法,
_thread.start_new_thread(self._learning_face, (event,))
def cameraid_choice( self, event ):
# 摄像头编号
cameraid = int(event.GetString()[-1])# 截取最后一个字符
if cameraid == 0:
self.m_textCtrl3.AppendText(u"准备打开本地摄像头!!!\n")
if cameraid == 1 or cameraid == 2:
self.m_textCtrl3.AppendText(u"准备打开外置摄像头!!!\n")
self.VIDEO_STREAM = cameraid
def vedio_on( self, event ):
if self.CAMERA_STYLE == True :# 释放摄像头资源
# 弹出关闭摄像头提示窗口
dlg = wx.MessageDialog(None, u'确定要关闭摄像头?', u'操作提示', wx.YES_NO | wx.ICON_QUESTION)
if(dlg.ShowModal() == wx.ID_YES):
self.cap.release()#释放摄像头
self.bmp.SetBitmap(wx.Bitmap(self.image_cover))#封面
dlg.Destroy()#取消弹窗
# 选择文件夹对话框窗口
dialog = wx.FileDialog(self,u"选择视频检测",os.getcwd(),'',wildcard="(*.mp4)|*.mp4",style=wx.FD_OPEN | wx.FD_CHANGE_DIR)
if dialog.ShowModal() == wx.ID_OK:
#如果确定了选择的文件夹,将文件夹路径写到m_textCtrl3控件
self.m_textCtrl3.SetValue(u"文件路径:"+dialog.GetPath()+"\n")
self.VIDEO_STREAM = str(dialog.GetPath())# 更新全局变量路径
dialog.Destroy
"""使用多线程,子线程运行后台的程序,主线程更新前台的UI,这样不会互相影响"""
import _thread
# 创建子线程,按钮调用这个方法,
_thread.start_new_thread(self._learning_face, (event,))
def AR_CONSEC_FRAMES( self, event ):
self.m_textCtrl3.AppendText(u"设置疲劳间隔为:\t"+event.GetString()+"秒\n")
self.AR_CONSEC_FRAMES_check = int(event.GetString())
def OUT_AR_CONSEC_FRAMES( self, event ):
self.m_textCtrl3.AppendText(u"设置脱岗间隔为:\t"+event.GetString()+"秒\n")
self.OUT_AR_CONSEC_FRAMES_check = int(event.GetString())
def off(self,event):
"""关闭摄像头,显示封面页"""
self.cap.release()
self.bmp.SetBitmap(wx.Bitmap(self.image_cover))
def OnClose(self, evt):
"""关闭窗口事件函数"""
dlg = wx.MessageDialog(None, u'确定要关闭本窗口?', u'操作提示', wx.YES_NO | wx.ICON_QUESTION)
if(dlg.ShowModal() == wx.ID_YES):
self.Destroy()
print("检测结束,成功退出程序!!!")
class main_app(wx.App):
"""
在OnInit() 里边申请Frame类,这样能保证一定是在app后调用,
这个函数是app执行完自己的__init__函数后就会执行
"""
# OnInit 方法在主事件循环开始前被wxPython系统调用,是wxpython独有的
def OnInit(self):
self.frame = Fatigue_detecting(parent=None,title="Fatigue Demo")
self.frame.Show(True)
return True
if __name__ == "__main__":
app = main_app()
app.MainLoop()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/cassan/fatigue_detecting.git
git@gitee.com:cassan/fatigue_detecting.git
cassan
fatigue_detecting
fatigue_detecting
master

搜索帮助