# keras-onnx **Repository Path**: bruno_bai/keras-onnx ## Basic Information - **Project Name**: keras-onnx - **Description**: No description available - **Primary Language**: Unknown - **License**: MIT - **Default Branch**: master - **Homepage**: None - **GVP Project**: No ## Statistics - **Stars**: 0 - **Forks**: 0 - **Created**: 2020-11-27 - **Last Updated**: 2020-12-19 ## Categories & Tags **Categories**: Uncategorized **Tags**: None ## README # keras2onnx | | Linux | Windows | |----------|-------|---------| | keras.io | [![Build Status](https://dev.azure.com/onnxmltools/ketone/_apis/build/status/linux-conda-ci?branchName=master)](https://dev.azure.com/onnxmltools/ketone/_build/latest?definitionId=9&branchName=master) | [![Build Status](https://dev.azure.com/onnxmltools/ketone/_apis/build/status/win32-conda-ci?branchName=master)](https://dev.azure.com/onnxmltools/ketone/_build/latest?definitionId=10&branchName=master) | | tf.keras | [![Build Status](https://dev.azure.com/onnxmltools/ketone/_apis/build/status/linux-tf-keras-ci?branchName=master)](https://dev.azure.com/onnxmltools/ketone/_build/latest?definitionId=19&branchName=master) | [![Build Status](https://dev.azure.com/onnxmltools/ketone/_apis/build/status/win32-tf-keras-CI?branchName=master)](https://dev.azure.com/onnxmltools/ketone/_build/latest?definitionId=20&branchName=master) | # Introduction The keras2onnx model converter enables users to convert Keras models into the [ONNX](https://onnx.ai) model format. Initially, the Keras converter was developed in the project [onnxmltools](https://github.com/onnx/onnxmltools). keras2onnx converter development was moved into an [independent repository](https://github.com/onnx/keras-onnx) to support more kinds of Keras models and reduce the complexity of mixing multiple converters. Most of the common Keras layers have been supported for conversion. Please refer to the [Keras documentation](https://keras.io/layers/about-keras-layers/) or [tf.keras docs](https://www.tensorflow.org/api_docs/python/tf/keras/layers) for details on Keras layers. Windows Machine Learning (WinML) users can use [WinMLTools](https://docs.microsoft.com/en-us/windows/ai/windows-ml/convert-model-winmltools) which wrap its call on keras2onnx to convert the Keras models. If you want to use the keras2onnx converter, please refer to the [WinML Release Notes](https://docs.microsoft.com/en-us/windows/ai/windows-ml/release-notes) to identify the corresponding ONNX opset number for your WinML version. keras2onnx has been tested on **Python 3.5 - 3.8**, with **tensorflow 1.x/2.0 - 2.2** (CI build). It does not support **Python 2.x**. # Install You can install latest release of Keras2ONNX from PyPi: ``` pip install keras2onnx ``` or install from source: ``` pip install -U git+https://github.com/microsoft/onnxconverter-common pip install -U git+https://github.com/onnx/keras-onnx ``` Before running the converter, please notice that tensorflow has to be installed in your python environment, you can choose **tensorflow**/**tensorflow-cpu** package(CPU version) or **tensorflow-gpu**(GPU version) # Notes Keras2ONNX supports the new Keras subclassing model which was introduced in tensorflow 2.0 since the version **1.6.5**. Some typical subclassing models like [huggingface/transformers](https://github.com/huggingface/transformers) have been converted into ONNX and validated by ONNXRuntime.
Since its version 2.3, the [multi-backend Keras (keras.io)](https://keras.io/#multi-backend-keras-and-tfkeras) stops the support of the tensorflow version above 2.0. The auther suggests to switch to tf.keras for the new features. ## Multi-backend Keras and tf.keras: Both Keras model types are now supported in the keras2onnx converter. If in the user python env, Keras package was installed from [Keras.io](https://keras.io/) and tensorflow package version is 1.x, the converter converts the model as it was created by the keras.io package. Otherwise, it will convert it through [tf.keras](https://www.tensorflow.org/guide/keras).
If you want to override this behaviour, please specify the environment variable TF_KERAS=1 before invoking the converter python API. # Development Keras2ONNX depends on [onnxconverter-common](https://github.com/microsoft/onnxconverter-common). In practice, the latest code of this converter requires the latest version of onnxconverter-common, so if you install this converter from its source code, please install the onnxconverter-common in source code mode before keras2onnx installation. # Validated pre-trained Keras models Most Keras models could be converted successfully by calling ```keras2onnx.convert_keras```, including CV, GAN, NLP, Speech and etc. See the tutorial [here](https://github.com/onnx/keras-onnx/tree/master/tutorial). However some models with a lot of custom operations need custom conversion, the following are some examples, like [YOLOv3](https://github.com/qqwweee/keras-yolo3), and [Mask RCNN](https://github.com/matterport/Mask_RCNN). ## Scripts It will be useful to convert the models from Keras to ONNX from a python script. You can use the following API: ``` import keras2onnx keras2onnx.convert_keras(model, name=None, doc_string='', target_opset=None, channel_first_inputs=None): # type: (keras.Model, str, str, int, []) -> onnx.ModelProto """ :param model: keras model :param name: the converted onnx model internal name :param doc_string: :param target_opset: :param channel_first_inputs: A list of channel first input. :return: """ ``` Use the following script to convert keras application models to onnx, and then perform inference: ``` import numpy as np from keras.preprocessing import image from keras.applications.resnet50 import preprocess_input import keras2onnx import onnxruntime # image preprocessing img_path = 'street.jpg' # make sure the image is in img_path img_size = 224 img = image.load_img(img_path, target_size=(img_size, img_size)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # load keras model from keras.applications.resnet50 import ResNet50 model = ResNet50(include_top=True, weights='imagenet') # convert to onnx model onnx_model = keras2onnx.convert_keras(model, model.name) # runtime prediction content = onnx_model.SerializeToString() sess = onnxruntime.InferenceSession(content) x = x if isinstance(x, list) else [x] feed = dict([(input.name, x[n]) for n, input in enumerate(sess.get_inputs())]) pred_onnx = sess.run(None, feed) ``` The inference result is a list which aligns with keras model prediction result `model.predict()`. An alternative way to load onnx model to runtime session is to save the model first: ``` temp_model_file = 'model.onnx' keras2onnx.save_model(onnx_model, temp_model_file) sess = onnxruntime.InferenceSession(temp_model_file) ``` ## Contribute We welcome contributions in the form of feedback, ideas, or code. ## License [MIT License](LICENSE)