代码拉取完成,页面将自动刷新
同步操作将从 新无止竞/Ncnn_FaceTrack 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#include <cmath>
#include "mtcnn.h"
bool cmpScore(Bbox lsh, Bbox rsh) {
if (lsh.score < rsh.score)
return true;
else
return false;
}
bool cmpArea(Bbox lsh, Bbox rsh) {
if (lsh.area < rsh.area)
return false;
else
return true;
}
//MTCNN::MTCNN(){}
MTCNN::MTCNN(const std::string &model_path) {
std::vector<std::string> param_files = {
model_path+"/det1.param",
model_path+"/det2.param",
model_path+"/det3.param"
};
std::vector<std::string> bin_files = {
model_path+"/det1.bin",
model_path+"/det2.bin",
model_path+"/det3.bin"
};
Pnet.load_param(param_files[0].data());
Pnet.load_model(bin_files[0].data());
Rnet.load_param(param_files[1].data());
Rnet.load_model(bin_files[1].data());
Onet.load_param(param_files[2].data());
Onet.load_model(bin_files[2].data());
}
MTCNN::MTCNN(const std::vector<std::string> param_files, const std::vector<std::string> bin_files){
Pnet.load_param(param_files[0].data());
Pnet.load_model(bin_files[0].data());
Rnet.load_param(param_files[1].data());
Rnet.load_model(bin_files[1].data());
Onet.load_param(param_files[2].data());
Onet.load_model(bin_files[2].data());
}
MTCNN::~MTCNN(){
Pnet.clear();
Rnet.clear();
Onet.clear();
}
void MTCNN::SetMinFace(int minSize){
minsize = minSize;
}
void MTCNN::generateBbox(ncnn::Mat score, ncnn::Mat location, std::vector<Bbox>& boundingBox_, float scale){
const int stride = 2;
const int cellsize = 12;
//score p
float *p = score.channel(1);//score.data + score.cstep;
//float *plocal = location.data;
Bbox bbox;
float inv_scale = 1.0f/scale;
for(int row=0;row<score.h;row++){
for(int col=0;col<score.w;col++){
if(*p>threshold[0]){
bbox.score = *p;
bbox.x1 = round((stride*col+1)*inv_scale);
bbox.y1 = round((stride*row+1)*inv_scale);
bbox.x2 = round((stride*col+1+cellsize)*inv_scale);
bbox.y2 = round((stride*row+1+cellsize)*inv_scale);
bbox.area = (bbox.x2 - bbox.x1) * (bbox.y2 - bbox.y1);
const int index = row * score.w + col;
for(int channel=0;channel<4;channel++){
bbox.regreCoord[channel]=location.channel(channel)[index];
}
boundingBox_.push_back(bbox);
}
p++;
//plocal++;
}
}
}
void MTCNN::nmsTwoBoxs(std::vector<Bbox>& boundingBox_, std::vector<Bbox>& previousBox_, const float overlap_threshold, std::string modelname)
{
if (boundingBox_.empty()) {
return;
}
sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
//cout << boundingBox_.size() << " ";
for (std::vector<Bbox>::iterator ity = previousBox_.begin(); ity != previousBox_.end(); ity++) {
for (std::vector<Bbox>::iterator itx = boundingBox_.begin(); itx != boundingBox_.end();) {
int i = itx - boundingBox_.begin();
int j = ity - previousBox_.begin();
maxX = max(boundingBox_.at(i).x1, previousBox_.at(j).x1);
maxY = max(boundingBox_.at(i).y1, previousBox_.at(j).y1);
minX = min(boundingBox_.at(i).x2, previousBox_.at(j).x2);
minY = min(boundingBox_.at(i).y2, previousBox_.at(j).y2);
//maxX1 and maxY1 reuse
maxX = ((minX - maxX + 1)>0) ? (minX - maxX + 1) : 0;
maxY = ((minY - maxY + 1)>0) ? (minY - maxY + 1) : 0;
//IOU reuse for the area of two bbox
IOU = maxX * maxY;
if (!modelname.compare("Union"))
IOU = IOU / (boundingBox_.at(i).area + previousBox_.at(j).area - IOU);
else if (!modelname.compare("Min")) {
IOU = IOU / ((boundingBox_.at(i).area < previousBox_.at(j).area) ? boundingBox_.at(i).area : previousBox_.at(j).area);
}
if (IOU > overlap_threshold&&boundingBox_.at(i).score>previousBox_.at(j).score) {
//if (IOU > overlap_threshold) {
itx = boundingBox_.erase(itx);
}
else {
itx++;
}
}
}
//cout << boundingBox_.size() << endl;
}
void MTCNN::nms(std::vector<Bbox> &boundingBox_, const float overlap_threshold, std::string modelname){
if(boundingBox_.empty()){
return;
}
sort(boundingBox_.begin(), boundingBox_.end(), cmpScore);
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
std::vector<int> vPick;
int nPick = 0;
std::multimap<float, int> vScores;
const int num_boxes = boundingBox_.size();
vPick.resize(num_boxes);
for (int i = 0; i < num_boxes; ++i){
vScores.insert(std::pair<float, int>(boundingBox_[i].score, i));
}
while(vScores.size() > 0){
int last = vScores.rbegin()->second;
vPick[nPick] = last;
nPick += 1;
for (std::multimap<float, int>::iterator it = vScores.begin(); it != vScores.end();){
int it_idx = it->second;
maxX = max(boundingBox_.at(it_idx).x1, boundingBox_.at(last).x1);
maxY = max(boundingBox_.at(it_idx).y1, boundingBox_.at(last).y1);
minX = min(boundingBox_.at(it_idx).x2, boundingBox_.at(last).x2);
minY = min(boundingBox_.at(it_idx).y2, boundingBox_.at(last).y2);
//maxX1 and maxY1 reuse
maxX = ((minX-maxX+1)>0)? (minX-maxX+1) : 0;
maxY = ((minY-maxY+1)>0)? (minY-maxY+1) : 0;
//IOU reuse for the area of two bbox
IOU = maxX * maxY;
if(!modelname.compare("Union"))
IOU = IOU/(boundingBox_.at(it_idx).area + boundingBox_.at(last).area - IOU);
else if(!modelname.compare("Min")){
IOU = IOU/((boundingBox_.at(it_idx).area < boundingBox_.at(last).area)? boundingBox_.at(it_idx).area : boundingBox_.at(last).area);
}
if(IOU > overlap_threshold){
it = vScores.erase(it);
}else{
it++;
}
}
}
vPick.resize(nPick);
std::vector<Bbox> tmp_;
tmp_.resize(nPick);
for(int i = 0; i < nPick; i++){
tmp_[i] = boundingBox_[vPick[i]];
}
boundingBox_ = tmp_;
}
void MTCNN::refine(std::vector<Bbox> &vecBbox, const int &height, const int &width, bool square){
if(vecBbox.empty()){
return;
}
float bbw=0, bbh=0, maxSide=0;
float h = 0, w = 0;
float x1=0, y1=0, x2=0, y2=0;
for(std::vector<Bbox>::iterator it=vecBbox.begin(); it!=vecBbox.end();it++){
bbw = (*it).x2 - (*it).x1 + 1;
bbh = (*it).y2 - (*it).y1 + 1;
x1 = (*it).x1 + (*it).regreCoord[0]*bbw;
y1 = (*it).y1 + (*it).regreCoord[1]*bbh;
x2 = (*it).x2 + (*it).regreCoord[2]*bbw;
y2 = (*it).y2 + (*it).regreCoord[3]*bbh;
if(square){
w = x2 - x1 + 1;
h = y2 - y1 + 1;
maxSide = (h>w)?h:w;
x1 = x1 + w*0.5 - maxSide*0.5;
y1 = y1 + h*0.5 - maxSide*0.5;
(*it).x2 = round(x1 + maxSide - 1);
(*it).y2 = round(y1 + maxSide - 1);
(*it).x1 = round(x1);
(*it).y1 = round(y1);
}
//boundary check
if((*it).x1<0)(*it).x1=0;
if((*it).y1<0)(*it).y1=0;
if((*it).x2>width)(*it).x2 = width - 1;
if((*it).y2>height)(*it).y2 = height - 1;
it->area = (it->x2 - it->x1)*(it->y2 - it->y1);
}
}
void MTCNN::extractMaxFace(std::vector<Bbox>& boundingBox_)
{
if (boundingBox_.empty()) {
return;
}
sort(boundingBox_.begin(), boundingBox_.end(), cmpArea);
for (std::vector<Bbox>::iterator itx = boundingBox_.begin() + 1; itx != boundingBox_.end();) {
itx = boundingBox_.erase(itx);
}
}
void MTCNN::PNet(float scale)
{
//first stage
int hs = (int)ceil(img_h*scale);
int ws = (int)ceil(img_w*scale);
ncnn::Mat in;
resize_bilinear(img, in, ws, hs);
ncnn::Extractor ex = Pnet.create_extractor();
ex.set_light_mode(true);
//sex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat score_, location_;
ex.extract("prob1", score_);
ex.extract("conv4-2", location_);
std::vector<Bbox> boundingBox_;
generateBbox(score_, location_, boundingBox_, scale);
nms(boundingBox_, nms_threshold[0]);
firstBbox_.insert(firstBbox_.end(), boundingBox_.begin(), boundingBox_.end());
boundingBox_.clear();
}
void MTCNN::PNet(){
firstBbox_.clear();
float minl = img_w < img_h? img_w: img_h;
float m = (float)MIN_DET_SIZE/minsize;
minl *= m;
float factor = pre_facetor;
std::vector<float> scales_;
while(minl>MIN_DET_SIZE){
scales_.push_back(m);
minl *= factor;
m = m*factor;
}
for (size_t i = 0; i < scales_.size(); i++) {
int hs = (int)ceil(img_h*scales_[i]);
int ws = (int)ceil(img_w*scales_[i]);
ncnn::Mat in;
resize_bilinear(img, in, ws, hs);
ncnn::Extractor ex = Pnet.create_extractor();
//ex.set_num_threads(2);
ex.set_light_mode(true);
ex.input("data", in);
ncnn::Mat score_, location_;
ex.extract("prob1", score_);
ex.extract("conv4-2", location_);
std::vector<Bbox> boundingBox_;
generateBbox(score_, location_, boundingBox_, scales_[i]);
nms(boundingBox_, nms_threshold[0]);
firstBbox_.insert(firstBbox_.end(), boundingBox_.begin(), boundingBox_.end());
boundingBox_.clear();
}
}
void MTCNN::RNet(){
secondBbox_.clear();
int count = 0;
for(std::vector<Bbox>::iterator it=firstBbox_.begin(); it!=firstBbox_.end();it++){
ncnn::Mat tempIm;
copy_cut_border(img, tempIm, (*it).y1, img_h-(*it).y2, (*it).x1, img_w-(*it).x2);
ncnn::Mat in;
resize_bilinear(tempIm, in, 24, 24);
ncnn::Extractor ex = Rnet.create_extractor();
//ex.set_num_threads(2);
ex.set_light_mode(true);
ex.input("data", in);
ncnn::Mat score, bbox;
ex.extract("prob1", score);
ex.extract("conv5-2", bbox);
if ((float)score[1] > threshold[1]) {
for (int channel = 0; channel<4; channel++) {
it->regreCoord[channel] = (float)bbox[channel];//*(bbox.data+channel*bbox.cstep);
}
it->area = (it->x2 - it->x1)*(it->y2 - it->y1);
it->score = score.channel(1)[0];//*(score.data+score.cstep);
secondBbox_.push_back(*it);
}
}
}
float MTCNN::rnet(ncnn::Mat& img) {
ncnn::Extractor ex = Rnet.create_extractor();
const float mean_vals[3] = { 127.5f, 127.5f, 127.5f };
const float norm_vals[3] = { 1.0 / 127.5, 1.0 / 127.5, 1.0 / 127.5 };
img.substract_mean_normalize(mean_vals, norm_vals);
ex.set_light_mode(true);
ex.input("data", img);
ncnn::Mat score;
ex.extract("prob1", score);
return (float)score[1];
}
void MTCNN::ONet(){
thirdBbox_.clear();
for(std::vector<Bbox>::iterator it=secondBbox_.begin(); it!=secondBbox_.end();it++){
ncnn::Mat tempIm;
copy_cut_border(img, tempIm, (*it).y1, img_h-(*it).y2, (*it).x1, img_w-(*it).x2);
ncnn::Mat in;
resize_bilinear(tempIm, in, 48, 48);
ncnn::Extractor ex = Onet.create_extractor();
//ex.set_num_threads(2);
ex.set_light_mode(true);
ex.input("data", in);
ncnn::Mat score, bbox, keyPoint;
ex.extract("prob1", score);
ex.extract("conv6-2", bbox);
ex.extract("conv6-3", keyPoint);
if ((float)score[1] > threshold[2]) {
for (int channel = 0; channel < 4; channel++) {
it->regreCoord[channel] = (float)bbox[channel];
}
it->area = (it->x2 - it->x1) * (it->y2 - it->y1);
it->score = (float)score[1];
for (int num = 0; num<5; num++) {
(it->ppoint)[num] = it->x1 + (it->x2 - it->x1) * keyPoint[num];
(it->ppoint)[num + 5] = it->y1 + (it->y2 - it->y1) * keyPoint[num + 5];
}
thirdBbox_.push_back(*it);
}
}
}
Bbox MTCNN::onet(ncnn::Mat& img, int x, int y, int w, int h) {
Bbox faceBbox;
const float mean_vals[3] = { 127.5f, 127.5f, 127.5f };
const float norm_vals[3] = { 1.0 / 127.5, 1.0 / 127.5, 1.0 / 127.5 };
img.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = Onet.create_extractor();
ex.set_light_mode(true);
ex.input("data", img);
ncnn::Mat score, bbox, keyPoint;
ex.extract("prob1", score);
ex.extract("conv6-2", bbox);
ex.extract("conv6-3", keyPoint);
faceBbox.score = (float)score[1];
faceBbox.x1 = static_cast<int>(bbox[0] * w) + x;
faceBbox.y1 = static_cast<int>(bbox[1] * h) + y;
faceBbox.x2 = static_cast<int>(bbox[2] * w) + w + x;
faceBbox.y2 = static_cast<int>(bbox[3] * h) + h + y;
for (int num = 0; num<5; num++) {
(faceBbox.ppoint)[num] = x + w * keyPoint[num];
(faceBbox.ppoint)[num + 5] = y + h * keyPoint[num + 5];
}
return faceBbox;
}
void MTCNN::detect(ncnn::Mat& img_, std::vector<Bbox>& finalBbox_){
img = img_;
img_w = img.w;
img_h = img.h;
img.substract_mean_normalize(mean_vals, norm_vals);
PNet();
//the first stage's nms
if(firstBbox_.size() < 1) return;
nms(firstBbox_, nms_threshold[0]);
refine(firstBbox_, img_h, img_w, true);
//printf("firstBbox_.size()=%d\n", firstBbox_.size());
//second stage
RNet();
//printf("secondBbox_.size()=%d\n", secondBbox_.size());
if(secondBbox_.size() < 1) return;
nms(secondBbox_, nms_threshold[1]);
refine(secondBbox_, img_h, img_w, true);
//third stage
ONet();
//printf("thirdBbox_.size()=%d\n", thirdBbox_.size());
if(thirdBbox_.size() < 1) return;
refine(thirdBbox_, img_h, img_w, true);
nms(thirdBbox_, nms_threshold[2], "Min");
finalBbox_ = thirdBbox_;
if (smooth)
SmoothBbox(finalBbox_);
}
void MTCNN::detectMaxFace(ncnn::Mat& img_, std::vector<Bbox>& finalBbox) {
firstPreviousBbox_.clear();
secondPreviousBbox_.clear();
thirdPrevioussBbox_.clear();
firstBbox_.clear();
secondBbox_.clear();
thirdBbox_.clear();
//norm
img = img_;
img_w = img.w;
img_h = img.h;
img.substract_mean_normalize(mean_vals, norm_vals);
//pyramid size
float minl = img_w < img_h ? img_w : img_h;
float m = (float)MIN_DET_SIZE / minsize;
minl *= m;
float factor = pre_facetor;
std::vector<float> scales_;
while (minl>MIN_DET_SIZE) {
scales_.push_back(m);
minl *= factor;
m = m*factor;
}
sort(scales_.begin(), scales_.end());
//printf("scales_.size()=%d\n", scales_.size());
//Change the sampling process.
for (size_t i = 0; i < scales_.size(); i++)
{
//first stage
PNet(scales_[i]);
nms(firstBbox_, nms_threshold[0]);
nmsTwoBoxs(firstBbox_, firstPreviousBbox_, nms_threshold[0]);
if (firstBbox_.size() < 1) {
firstBbox_.clear();
continue;
}
firstPreviousBbox_.insert(firstPreviousBbox_.end(), firstBbox_.begin(), firstBbox_.end());
refine(firstBbox_, img_h, img_w, true);
//printf("firstBbox_.size()=%d\n", firstBbox_.size());
//second stage
RNet();
nms(secondBbox_, nms_threshold[1]);
nmsTwoBoxs(secondBbox_, secondPreviousBbox_, nms_threshold[0]);
secondPreviousBbox_.insert(secondPreviousBbox_.end(), secondBbox_.begin(), secondBbox_.end());
if (secondBbox_.size() < 1) {
firstBbox_.clear();
secondBbox_.clear();
continue;
}
refine(secondBbox_, img_h, img_w, true);
//third stage
ONet();
if (thirdBbox_.size() < 1) {
firstBbox_.clear();
secondBbox_.clear();
thirdBbox_.clear();
continue;
}
refine(thirdBbox_, img_h, img_w, true);
nms(thirdBbox_, nms_threshold[2], "Min");
if (thirdBbox_.size() > 0) {
extractMaxFace(thirdBbox_);
finalBbox = thirdBbox_;//if largest face size is similar,.
if (smooth)
SmoothBbox(finalBbox);
break;
}
}
}
float MTCNN::iou(Bbox & b1, Bbox & b2, std::string modelname)
{
float IOU = 0;
float maxX = 0;
float maxY = 0;
float minX = 0;
float minY = 0;
maxX = max(b1.x1, b2.x1);
maxY = max(b1.y1, b2.y1);
minX = min(b1.x2, b2.x2);
minY = min(b1.y2, b2.y2);
//maxX1 and maxY1 reuse
maxX = ((minX - maxX + 1)>0) ? (minX - maxX + 1) : 0;
maxY = ((minY - maxY + 1)>0) ? (minY - maxY + 1) : 0;
IOU = maxX * maxY;
if (!modelname.compare("Union"))
IOU = IOU / (b1.area + b2.area - IOU);
else if (!modelname.compare("Min")) {
IOU = IOU / ((b1.area < b2.area) ? b1.area : b2.area);
}
return IOU;
}
void MTCNN::SmoothBbox(std::vector<Bbox>& finalBbox)
{
static std::vector<Bbox> preBbox_;
for (int i = 0; i < finalBbox.size(); i++) {
for (int j = 0; j < preBbox_.size(); j++) {
//if (iou(finalBbox[i], preBbox_[j]) > 0.90)
//{
// finalBbox[i] = preBbox_[j];
//}
//else if (iou(finalBbox[i], preBbox_[j]) > 0.6) {
if (iou(finalBbox[i], preBbox_[j]) > 0.85) {
finalBbox[i].x1 = (finalBbox[i].x1 + preBbox_[j].x1) / 2;
finalBbox[i].y1 = (finalBbox[i].y1 + preBbox_[j].y1) / 2;
finalBbox[i].x2 = (finalBbox[i].x2 + preBbox_[j].x2) / 2;
finalBbox[i].y2 = (finalBbox[i].y2 + preBbox_[j].y2) / 2;
//finalBbox[i].area = (finalBbox[i].x2 - finalBbox[i].x1)*(finalBbox[i].y2 - finalBbox[i].y1);
for (int k = 0; k < 10; k++)
{
finalBbox[i].ppoint[k] = (finalBbox[i].ppoint[k] + preBbox_[j].ppoint[k]) / 2;
}
}
}
}
preBbox_ = finalBbox;
}
//void MTCNN::detection(const cv::Mat& img, vector<cv::Rect>& rectangles){
// ncnn::Mat ncnn_img = ncnn::Mat::from_pixels(img.data, ncnn::Mat::PIXEL_BGR2RGB, img.cols, img.rows);
// vector<Bbox> finalBbox;
// detect(ncnn_img, finalBbox);
// const int num_box = finalBbox.size();
// rectangles.resize(num_box);
// for(int i = 0; i < num_box; i++){
// rectangles[i] = cv::Rect(finalBbox[i].x1, finalBbox[i].y1, finalBbox[i].x2 - finalBbox[i].x1 + 1, finalBbox[i].y2 - finalBbox[i].y1 + 1);
// }
//}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。