代码拉取完成,页面将自动刷新
同步操作将从 云金杞/pyfolio 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#
# Copyright 2017 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import warnings
from collections import OrderedDict
import empyrical as ep
import pandas as pd
import matplotlib.pyplot as plt
from pyfolio.pos import get_percent_alloc
from pyfolio.txn import get_turnover
from pyfolio.utils import print_table, configure_legend
PERF_ATTRIB_TURNOVER_THRESHOLD = 0.25
def perf_attrib(returns,
positions,
factor_returns,
factor_loadings,
transactions=None,
pos_in_dollars=True):
"""
Attributes the performance of a returns stream to a set of risk factors.
Preprocesses inputs, and then calls empyrical.perf_attrib. See
empyrical.perf_attrib for more info.
Performance attribution determines how much each risk factor, e.g.,
momentum, the technology sector, etc., contributed to total returns, as
well as the daily exposure to each of the risk factors. The returns that
can be attributed to one of the given risk factors are the
`common_returns`, and the returns that _cannot_ be attributed to a risk
factor are the `specific_returns`, or the alpha. The common_returns and
specific_returns summed together will always equal the total returns.
Parameters
----------
returns : pd.Series
Returns for each day in the date range.
- Example:
2017-01-01 -0.017098
2017-01-02 0.002683
2017-01-03 -0.008669
positions: pd.DataFrame
Daily holdings (in dollars or percentages), indexed by date.
Will be converted to percentages if positions are in dollars.
Short positions show up as cash in the 'cash' column.
- Examples:
AAPL TLT XOM cash
2017-01-01 34 58 10 0
2017-01-02 22 77 18 0
2017-01-03 -15 27 30 15
AAPL TLT XOM cash
2017-01-01 0.333333 0.568627 0.098039 0.0
2017-01-02 0.188034 0.658120 0.153846 0.0
2017-01-03 0.208333 0.375000 0.416667 0.0
factor_returns : pd.DataFrame
Returns by factor, with date as index and factors as columns
- Example:
momentum reversal
2017-01-01 0.002779 -0.005453
2017-01-02 0.001096 0.010290
factor_loadings : pd.DataFrame
Factor loadings for all days in the date range, with date and ticker as
index, and factors as columns.
- Example:
momentum reversal
dt ticker
2017-01-01 AAPL -1.592914 0.852830
TLT 0.184864 0.895534
XOM 0.993160 1.149353
2017-01-02 AAPL -0.140009 -0.524952
TLT -1.066978 0.185435
XOM -1.798401 0.761549
transactions : pd.DataFrame, optional
Executed trade volumes and fill prices. Used to check the turnover of
the algorithm. Default is None, in which case the turnover check is
skipped.
- One row per trade.
- Trades on different names that occur at the
same time will have identical indicies.
- Example:
index amount price symbol
2004-01-09 12:18:01 483 324.12 'AAPL'
2004-01-09 12:18:01 122 83.10 'MSFT'
2004-01-13 14:12:23 -75 340.43 'AAPL'
pos_in_dollars : bool
Flag indicating whether `positions` are in dollars or percentages
If True, positions are in dollars.
Returns
-------
tuple of (risk_exposures_portfolio, perf_attribution)
risk_exposures_portfolio : pd.DataFrame
df indexed by datetime, with factors as columns
- Example:
momentum reversal
dt
2017-01-01 -0.238655 0.077123
2017-01-02 0.821872 1.520515
perf_attribution : pd.DataFrame
df with factors, common returns, and specific returns as columns,
and datetimes as index
- Example:
momentum reversal common_returns specific_returns
dt
2017-01-01 0.249087 0.935925 1.185012 1.185012
2017-01-02 -0.003194 -0.400786 -0.403980 -0.403980
"""
(returns,
positions,
factor_returns,
factor_loadings) = _align_and_warn(returns,
positions,
factor_returns,
factor_loadings,
transactions=transactions,
pos_in_dollars=pos_in_dollars)
# Note that we convert positions to percentages *after* the checks
# above, since get_turnover() expects positions in dollars.
positions = _stack_positions(positions, pos_in_dollars=pos_in_dollars)
return ep.perf_attrib(returns, positions, factor_returns, factor_loadings)
def compute_exposures(positions, factor_loadings, stack_positions=True,
pos_in_dollars=True):
"""
Compute daily risk factor exposures.
Normalizes positions (if necessary) and calls ep.compute_exposures.
See empyrical.compute_exposures for more info.
Parameters
----------
positions: pd.DataFrame or pd.Series
Daily holdings (in dollars or percentages), indexed by date, OR
a series of holdings indexed by date and ticker.
- Examples:
AAPL TLT XOM cash
2017-01-01 34 58 10 0
2017-01-02 22 77 18 0
2017-01-03 -15 27 30 15
AAPL TLT XOM cash
2017-01-01 0.333333 0.568627 0.098039 0.0
2017-01-02 0.188034 0.658120 0.153846 0.0
2017-01-03 0.208333 0.375000 0.416667 0.0
dt ticker
2017-01-01 AAPL 0.417582
TLT 0.010989
XOM 0.571429
2017-01-02 AAPL 0.202381
TLT 0.535714
XOM 0.261905
factor_loadings : pd.DataFrame
Factor loadings for all days in the date range, with date and ticker as
index, and factors as columns.
- Example:
momentum reversal
dt ticker
2017-01-01 AAPL -1.592914 0.852830
TLT 0.184864 0.895534
XOM 0.993160 1.149353
2017-01-02 AAPL -0.140009 -0.524952
TLT -1.066978 0.185435
XOM -1.798401 0.761549
stack_positions : bool
Flag indicating whether `positions` should be converted to long format.
pos_in_dollars : bool
Flag indicating whether `positions` are in dollars or percentages
If True, positions are in dollars.
Returns
-------
risk_exposures_portfolio : pd.DataFrame
df indexed by datetime, with factors as columns.
- Example:
momentum reversal
dt
2017-01-01 -0.238655 0.077123
2017-01-02 0.821872 1.520515
"""
if stack_positions:
positions = _stack_positions(positions, pos_in_dollars=pos_in_dollars)
return ep.compute_exposures(positions, factor_loadings)
def create_perf_attrib_stats(perf_attrib, risk_exposures):
"""
Takes perf attribution data over a period of time and computes annualized
multifactor alpha, multifactor sharpe, risk exposures.
"""
summary = OrderedDict()
total_returns = perf_attrib['total_returns']
specific_returns = perf_attrib['specific_returns']
common_returns = perf_attrib['common_returns']
summary['Annualized Specific Return'] =\
ep.annual_return(specific_returns)
summary['Annualized Common Return'] =\
ep.annual_return(common_returns)
summary['Annualized Total Return'] =\
ep.annual_return(total_returns)
summary['Specific Sharpe Ratio'] =\
ep.sharpe_ratio(specific_returns)
summary['Cumulative Specific Return'] =\
ep.cum_returns_final(specific_returns)
summary['Cumulative Common Return'] =\
ep.cum_returns_final(common_returns)
summary['Total Returns'] =\
ep.cum_returns_final(total_returns)
summary = pd.Series(summary, name='')
annualized_returns_by_factor = [ep.annual_return(perf_attrib[c])
for c in risk_exposures.columns]
cumulative_returns_by_factor = [ep.cum_returns_final(perf_attrib[c])
for c in risk_exposures.columns]
risk_exposure_summary = pd.DataFrame(
data=OrderedDict([
(
'Average Risk Factor Exposure',
risk_exposures.mean(axis='rows')
),
('Annualized Return', annualized_returns_by_factor),
('Cumulative Return', cumulative_returns_by_factor),
]),
index=risk_exposures.columns,
)
return summary, risk_exposure_summary
def show_perf_attrib_stats(returns,
positions,
factor_returns,
factor_loadings,
transactions=None,
pos_in_dollars=True):
"""
Calls `perf_attrib` using inputs, and displays outputs using
`utils.print_table`.
"""
risk_exposures, perf_attrib_data = perf_attrib(
returns,
positions,
factor_returns,
factor_loadings,
transactions,
pos_in_dollars=pos_in_dollars,
)
perf_attrib_stats, risk_exposure_stats =\
create_perf_attrib_stats(perf_attrib_data, risk_exposures)
percentage_formatter = '{:.2%}'.format
float_formatter = '{:.2f}'.format
summary_stats = perf_attrib_stats.loc[['Annualized Specific Return',
'Annualized Common Return',
'Annualized Total Return',
'Specific Sharpe Ratio']]
# Format return rows in summary stats table as percentages.
for col_name in (
'Annualized Specific Return',
'Annualized Common Return',
'Annualized Total Return',
):
summary_stats[col_name] = percentage_formatter(summary_stats[col_name])
# Display sharpe to two decimal places.
summary_stats['Specific Sharpe Ratio'] = float_formatter(
summary_stats['Specific Sharpe Ratio']
)
print_table(summary_stats, name='Summary Statistics')
print_table(
risk_exposure_stats,
name='Exposures Summary',
# In exposures table, format exposure column to 2 decimal places, and
# return columns as percentages.
formatters={
'Average Risk Factor Exposure': float_formatter,
'Annualized Return': percentage_formatter,
'Cumulative Return': percentage_formatter,
},
)
def plot_returns(perf_attrib_data, cost=None, ax=None):
"""
Plot total, specific, and common returns.
Parameters
----------
perf_attrib_data : pd.DataFrame
df with factors, common returns, and specific returns as columns,
and datetimes as index. Assumes the `total_returns` column is NOT
cost adjusted.
- Example:
momentum reversal common_returns specific_returns
dt
2017-01-01 0.249087 0.935925 1.185012 1.185012
2017-01-02 -0.003194 -0.400786 -0.403980 -0.403980
cost : pd.Series, optional
if present, gets subtracted from `perf_attrib_data['total_returns']`,
and gets plotted separately
ax : matplotlib.axes.Axes
axes on which plots are made. if None, current axes will be used
Returns
-------
ax : matplotlib.axes.Axes
"""
if ax is None:
ax = plt.gca()
returns = perf_attrib_data['total_returns']
total_returns_label = 'Total returns'
cumulative_returns_less_costs = _cumulative_returns_less_costs(
returns,
cost
)
if cost is not None:
total_returns_label += ' (adjusted)'
specific_returns = perf_attrib_data['specific_returns']
common_returns = perf_attrib_data['common_returns']
ax.plot(cumulative_returns_less_costs, color='b',
label=total_returns_label)
ax.plot(ep.cum_returns(specific_returns), color='g',
label='Cumulative specific returns')
ax.plot(ep.cum_returns(common_returns), color='r',
label='Cumulative common returns')
if cost is not None:
ax.plot(-ep.cum_returns(cost), color='k',
label='Cumulative cost spent')
ax.set_title('Time series of cumulative returns')
ax.set_ylabel('Returns')
configure_legend(ax)
return ax
def plot_alpha_returns(alpha_returns, ax=None):
"""
Plot histogram of daily multi-factor alpha returns (specific returns).
Parameters
----------
alpha_returns : pd.Series
series of daily alpha returns indexed by datetime
ax : matplotlib.axes.Axes
axes on which plots are made. if None, current axes will be used
Returns
-------
ax : matplotlib.axes.Axes
"""
if ax is None:
ax = plt.gca()
ax.hist(alpha_returns, color='g', label='Multi-factor alpha')
ax.set_title('Histogram of alphas')
ax.axvline(0, color='k', linestyle='--', label='Zero')
avg = alpha_returns.mean()
ax.axvline(avg, color='b', label='Mean = {: 0.5f}'.format(avg))
configure_legend(ax)
return ax
def plot_factor_contribution_to_perf(
perf_attrib_data,
ax=None,
title='Cumulative common returns attribution',
):
"""
Plot each factor's contribution to performance.
Parameters
----------
perf_attrib_data : pd.DataFrame
df with factors, common returns, and specific returns as columns,
and datetimes as index
- Example:
momentum reversal common_returns specific_returns
dt
2017-01-01 0.249087 0.935925 1.185012 1.185012
2017-01-02 -0.003194 -0.400786 -0.403980 -0.403980
ax : matplotlib.axes.Axes
axes on which plots are made. if None, current axes will be used
title : str, optional
title of plot
Returns
-------
ax : matplotlib.axes.Axes
"""
if ax is None:
ax = plt.gca()
factors_to_plot = perf_attrib_data.drop(
['total_returns', 'common_returns'], axis='columns', errors='ignore'
)
factors_cumulative = pd.DataFrame()
for factor in factors_to_plot:
factors_cumulative[factor] = ep.cum_returns(factors_to_plot[factor])
for col in factors_cumulative:
ax.plot(factors_cumulative[col])
ax.axhline(0, color='k')
configure_legend(ax, change_colors=True)
ax.set_ylabel('Cumulative returns by factor')
ax.set_title(title)
return ax
def plot_risk_exposures(exposures, ax=None,
title='Daily risk factor exposures'):
"""
Parameters
----------
exposures : pd.DataFrame
df indexed by datetime, with factors as columns
- Example:
momentum reversal
dt
2017-01-01 -0.238655 0.077123
2017-01-02 0.821872 1.520515
ax : matplotlib.axes.Axes
axes on which plots are made. if None, current axes will be used
Returns
-------
ax : matplotlib.axes.Axes
"""
if ax is None:
ax = plt.gca()
for col in exposures:
ax.plot(exposures[col])
configure_legend(ax, change_colors=True)
ax.set_ylabel('Factor exposures')
ax.set_title(title)
return ax
def _align_and_warn(returns,
positions,
factor_returns,
factor_loadings,
transactions=None,
pos_in_dollars=True):
"""
Make sure that all inputs have matching dates and tickers,
and raise warnings if necessary.
"""
missing_stocks = positions.columns.difference(
factor_loadings.index.get_level_values(1).unique()
)
# cash will not be in factor_loadings
num_stocks = len(positions.columns) - 1
missing_stocks = missing_stocks.drop('cash')
num_stocks_covered = num_stocks - len(missing_stocks)
missing_ratio = round(len(missing_stocks) / num_stocks, ndigits=3)
if num_stocks_covered == 0:
raise ValueError("Could not perform performance attribution. "
"No factor loadings were available for this "
"algorithm's positions.")
if len(missing_stocks) > 0:
if len(missing_stocks) > 5:
missing_stocks_displayed = (
" {} assets were missing factor loadings, including: {}..{}"
).format(len(missing_stocks),
', '.join(missing_stocks[:5].map(str)),
missing_stocks[-1])
avg_allocation_msg = "selected missing assets"
else:
missing_stocks_displayed = (
"The following assets were missing factor loadings: {}."
).format(list(missing_stocks))
avg_allocation_msg = "missing assets"
missing_stocks_warning_msg = (
"Could not determine risk exposures for some of this algorithm's "
"positions. Returns from the missing assets will not be properly "
"accounted for in performance attribution.\n"
"\n"
"{}. "
"Ignoring for exposure calculation and performance attribution. "
"Ratio of assets missing: {}. Average allocation of {}:\n"
"\n"
"{}.\n"
).format(
missing_stocks_displayed,
missing_ratio,
avg_allocation_msg,
positions[missing_stocks[:5].union(missing_stocks[[-1]])].mean(),
)
warnings.warn(missing_stocks_warning_msg)
positions = positions.drop(missing_stocks, axis='columns',
errors='ignore')
missing_factor_loadings_index = positions.index.difference(
factor_loadings.index.get_level_values(0).unique()
)
missing_factor_loadings_index = positions.index.difference(
factor_loadings.index.get_level_values(0).unique()
)
if len(missing_factor_loadings_index) > 0:
if len(missing_factor_loadings_index) > 5:
missing_dates_displayed = (
"(first missing is {}, last missing is {})"
).format(
missing_factor_loadings_index[0],
missing_factor_loadings_index[-1]
)
else:
missing_dates_displayed = list(missing_factor_loadings_index)
warning_msg = (
"Could not find factor loadings for {} dates: {}. "
"Truncating date range for performance attribution. "
).format(len(missing_factor_loadings_index), missing_dates_displayed)
warnings.warn(warning_msg)
positions = positions.drop(missing_factor_loadings_index,
errors='ignore')
returns = returns.drop(missing_factor_loadings_index, errors='ignore')
factor_returns = factor_returns.drop(missing_factor_loadings_index,
errors='ignore')
if transactions is not None and pos_in_dollars:
turnover = get_turnover(positions, transactions).mean()
if turnover > PERF_ATTRIB_TURNOVER_THRESHOLD:
warning_msg = (
"This algorithm has relatively high turnover of its "
"positions. As a result, performance attribution might not be "
"fully accurate.\n"
"\n"
"Performance attribution is calculated based "
"on end-of-day holdings and does not account for intraday "
"activity. Algorithms that derive a high percentage of "
"returns from buying and selling within the same day may "
"receive inaccurate performance attribution.\n"
)
warnings.warn(warning_msg)
return (returns, positions, factor_returns, factor_loadings)
def _stack_positions(positions, pos_in_dollars=True):
"""
Convert positions to percentages if necessary, and change them
to long format.
Parameters
----------
positions: pd.DataFrame
Daily holdings (in dollars or percentages), indexed by date.
Will be converted to percentages if positions are in dollars.
Short positions show up as cash in the 'cash' column.
pos_in_dollars : bool
Flag indicating whether `positions` are in dollars or percentages
If True, positions are in dollars.
"""
if pos_in_dollars:
# convert holdings to percentages
positions = get_percent_alloc(positions)
# remove cash after normalizing positions
positions = positions.drop('cash', axis='columns')
# convert positions to long format
positions = positions.stack()
positions.index = positions.index.set_names(['dt', 'ticker'])
return positions
def _cumulative_returns_less_costs(returns, costs):
"""
Compute cumulative returns, less costs.
"""
if costs is None:
return ep.cum_returns(returns)
return ep.cum_returns(returns - costs)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。