代码拉取完成,页面将自动刷新
同步操作将从 魏士杰/fuzzy-pid 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#include "fuzzyPID.h"
struct fuzzy *fuzzy_init(unsigned int input_num, unsigned int output_num) {
struct fuzzy *fuzzy_struct = (struct fuzzy *) malloc(sizeof(struct fuzzy));
fuzzy_struct->input_num = input_num;
fuzzy_struct->output_num = output_num;
fuzzy_struct->mf_type = (unsigned int *) malloc((input_num + output_num) * sizeof(unsigned int));
#ifdef fuzzy_pid_rule_base_deep_copy
fuzzy_struct->mf_params = (int *) malloc(4 * qf_default * sizeof(int));
fuzzy_struct->rule_base = (int *) malloc(output_num * qf_default * qf_default * sizeof(int));
#endif
fuzzy_struct->output = (float *) malloc(output_num * sizeof(float));
return fuzzy_struct;
}
void delete_fuzzy(struct fuzzy *fuzzy_struct) {
free(fuzzy_struct->mf_type);
free(fuzzy_struct->output);
free(fuzzy_struct);
}
void fuzzy_params_init(struct fuzzy *fuzzy_struct, unsigned int mf_type, unsigned int fo_type, unsigned int df_type,
int mf_params[], int rule_base[][qf_default]) {
for (unsigned int i = 0; i < fuzzy_struct->input_num + fuzzy_struct->output_num; ++i) {
fuzzy_struct->mf_type[i] = mf_type;
}
for (unsigned int i = 0; i < fuzzy_struct->output_num; ++i) {
fuzzy_struct->output[i] = 0;
}
#ifdef fuzzy_pid_rule_base_deep_copy
for (unsigned int j = 0; j < 4 * qf_default; ++j) {
fuzzy_struct->mf_params[j] = mf_params[j];
}
for (unsigned int k = 0; k < fuzzy_struct->output_num * qf_default; ++k) {
for (unsigned int i = 0; i < qf_default; ++i) {
fuzzy_struct->rule_base[k * 7 + i] = rule_base[k][i];
}
}
#else
fuzzy_struct->mf_params = mf_params;
fuzzy_struct->rule_base = (int *) rule_base;
#endif
fuzzy_struct->fo_type = fo_type;
fuzzy_struct->df_type = df_type;
}
#define inverse(parameter) 1.0f/(float)parameter
// Gaussian membership function
float gaussmf(float x, float sigma, float c) {
return expf(-powf(((x - c) / sigma), 2.0f));
}
// Generalized bell-shaped membership function
float gbellmf(float x, float a, float b, float c) {
return inverse(1.0f + powf(fabsf((x - c) / a), 2.0f * b));
}
// Sigmoidal membership function
float sigmf(float x, float a, float c) {
return inverse(1.0f + expf(a * (c - x)));
}
// Trapezoidal membership function
float trapmf(float x, float a, float b, float c, float d) {
if (x >= a && x < b)
return (x - a) / (b - a);
else if (x >= b && x < c)
return 1.0f;
else if (x >= c && x <= d)
return (d - x) / (d - c);
else return 0.0f;
}
// Triangular membership function
float trimf(float x, float a, float b, float c) {
return trapmf(x, a, b, b, c);
}
// Z-shaped membership function
float zmf(float x, float a, float b) {
if (x <= a)
return 1.0f;
else if (x >= a && x <= (a + b) / 2.0f)
return 1.0f - 2.0f * powf((x - a) / (b - a), 2.0f);
else if (x >= (a + b) / 2.0f && x < b)
return 2.0f * powf((x - b) / (b - a), 2.0f);
else return 0;
}
// Membership function
float mf(float x, unsigned int mf_type, int *params) {
switch (mf_type) {
case 0:
return gaussmf(x, params[0], params[1]);
case 1:
return gbellmf(x, params[0], params[1], params[2]);
case 2:
return sigmf(x, params[0], params[2]);
case 3:
return trapmf(x, params[0], params[1], params[2], params[3]);
case 5:
return zmf(x, params[0], params[1]);
default: // set triangular as default membership function
return trimf(x, params[0], params[1], params[2]);
}
}
// Union operator
float or(float a, float b, unsigned int type) {
if (type == 1) { // algebraic sum
return a + b - a * b;
} else if (type == 2) { // bounded sum
return fminf(1, a + b);
} else { // fuzzy union
return fmaxf(a, b);
}
}
// Intersection operator
float and(float a, float b, unsigned int type) {
if (type == 1) { // algebraic product
return a * b;
} else if (type == 2) { // bounded product
return fmaxf(0, a + b - 1);
} else { // fuzzy intersection
return fminf(a, b);
}
}
// Equilibrium operator
float equilibrium(float a, float b, float params) {
return powf(a * b, 1 - params) * powf(1 - (1 - a) * (1 - b), params);
}
// Fuzzy operator
float fo(float a, float b, unsigned int type) {
if (type < 3) {
return and(a, b, type);
} else if (type < 6) {
return or(a, b, type - 3);
} else {
return equilibrium(a, b, 0.5f);
}
}
// Mean of centers defuzzifier, only for two input multiple index
void moc(const float *joint_membership, const unsigned int *index, const unsigned int *count, struct fuzzy *fuzzy_struct) {
float denominator_count = 0;
float numerator_count[fuzzy_struct->output_num];
for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l) {
numerator_count[l] = 0;
}
for (int i = 0; i < count[0]; ++i) {
for (int j = 0; j < count[1]; ++j) {
denominator_count += joint_membership[i * count[1] + j];
}
}
for (unsigned int k = 0; k < fuzzy_struct->output_num; ++k) {
for (unsigned int i = 0; i < count[0]; ++i) {
for (unsigned int j = 0; j < count[1]; ++j) {
numerator_count[k] += joint_membership[i * count[1] + j] *
fuzzy_struct->rule_base[k * qf_default * qf_default + index[i] * qf_default +
index[count[0] + j]];
}
}
}
#ifdef fuzzy_pid_debug_print
printf("output:\n");
#endif
for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l) {
fuzzy_struct->output[l] = numerator_count[l] / denominator_count;
#ifdef fuzzy_pid_debug_print
printf("%f,%f,%f\n", numerator_count[l], denominator_count, fuzzy_struct->index[l]);
#endif
}
}
// Defuzzifier
void df(const float *joint_membership, const unsigned int *output, const unsigned int *count, struct fuzzy *fuzzy_struct,
int df_type) {
if(df_type == 0)
moc(joint_membership, output, count, fuzzy_struct);
else {
printf("Waring: No such of defuzzifier!\n");
moc(joint_membership, output, count, fuzzy_struct);
}
}
void fuzzy_control(float e, float de, struct fuzzy *fuzzy_struct) {
float membership[qf_default * 2]; // Store membership
unsigned int index[qf_default * 2]; // Store the index of each membership
unsigned int count[2] = {0, 0};
{
int j = 0;
for (int i = 0; i < qf_default; ++i) {
float temp = mf(e, fuzzy_struct->mf_type[0], fuzzy_struct->mf_params + 4 * i);
if (temp > 1e-4) {
membership[j] = temp;
index[j++] = i;
}
}
count[0] = j;
for (int i = 0; i < qf_default; ++i) {
float temp = mf(de, fuzzy_struct->mf_type[1], fuzzy_struct->mf_params + 4 * i);
if (temp > 1e-4) {
membership[j] = temp;
index[j++] = i;
}
}
count[1] = j - count[0];
}
#ifdef fuzzy_pid_debug_print
printf("membership:\n");
for (unsigned int k = 0; k < j; ++k) {
printf("%f\n", membership[k]);
}
printf("index:\n");
for (unsigned int k = 0; k < j; ++k) {
printf("%d\n", index[k]);
}
printf("count:\n");
for (unsigned int k = 0; k < 2; ++k) {
printf("%d\n", count[k]);
}
#endif
if (count[0] == 0 || count[1] == 0) {
for (unsigned int l = 0; l < fuzzy_struct->output_num; ++l) {
fuzzy_struct->output[l] = 0;
}
return;
}
// Joint membership
float joint_membership[count[0] * count[1]];
for (int i = 0; i < count[0]; ++i) {
for (int j = 0; j < count[1]; ++j) {
joint_membership[i * count[1] + j] = fo(membership[i], membership[count[0] + j], fuzzy_struct->fo_type);
}
}
df(joint_membership, index, count, fuzzy_struct, 0);
}
struct PID *raw_fuzzy_pid_init(float kp, float ki, float kd, float integral_limit, float dead_zone,
float feed_forward, float error_max, float delta_error_max, float delta_kp_max,
float delta_ki_max, float delta_kd_max, unsigned int mf_type, unsigned int fo_type,
unsigned int df_type, int mf_params[], int rule_base[][qf_default],
int output_min_value, int output_middle_value, int output_max_value) {
struct PID *pid = (struct PID *) malloc(sizeof(struct PID));
pid->kp = kp;
pid->ki = ki;
pid->kd = kd;
pid->delta_kp_max = delta_kp_max;
pid->delta_ki_max = delta_ki_max;
pid->delta_kd_max = delta_kd_max;
pid->delta_kp = 0;
pid->delta_ki = 0;
pid->delta_kd = 0;
pid->error_max = error_max;
pid->delta_error_max = delta_error_max;
int output_count = 1;
if (ki > 1e-4) {
output_count += 1;
if (kd > 1e-4)
output_count += 1;
}
pid->fuzzy_struct = fuzzy_init(2, output_count);
fuzzy_params_init(pid->fuzzy_struct, mf_type, fo_type, df_type, mf_params, rule_base);
pid->last_error = 0;
pid->current_error = 0;
pid->intergral = 0;
pid->intergral_limit = integral_limit;
pid->dead_zone = dead_zone;
pid->feed_forward = feed_forward;
pid->output_max_value = output_max_value;
pid->output_middle_value = output_middle_value;
pid->output_min_value = output_min_value;
return pid;
}
struct PID *fuzzy_pid_init(float *params, float delta_k, unsigned int mf_type, unsigned int fo_type,
unsigned int df_type, int mf_params[], int rule_base[][qf_default]) {
return raw_fuzzy_pid_init(params[0], params[1], params[2], params[3], params[4], params[5], max_error,
max_delta_error, params[0] / delta_k, params[1] / delta_k, params[2] / delta_k, mf_type,
fo_type, df_type, mf_params,
rule_base, min_pwm_output, middle_pwm_output, max_pwm_output);
}
struct PID *raw_pid_init(float kp, float ki, float kd, float integral_limit, float dead_zone,
float feed_forward, float linear_adaptive_kp, float error_max, float delta_error_max,
int output_min_value, int output_middle_value, int output_max_value) {
struct PID *pid = (struct PID *) malloc(sizeof(struct PID));
pid->kp = kp;
pid->ki = ki;
pid->kd = kd;
pid->delta_kp_max = 0;
pid->delta_ki_max = 0;
pid->delta_kd_max = 0;
pid->delta_kp = 0;
pid->delta_ki = 0;
pid->delta_kd = 0;
pid->error_max = error_max;
pid->delta_error_max = delta_error_max;
pid->fuzzy_struct = NULL;
pid->last_error = 0;
pid->current_error = 0;
pid->intergral = 0;
pid->intergral_limit = integral_limit;
pid->dead_zone = dead_zone;
pid->feed_forward = feed_forward;
pid->output_max_value = output_max_value;
pid->output_middle_value = output_middle_value;
pid->output_min_value = output_min_value;
pid->linear_adaptive_kp = linear_adaptive_kp;
return pid;
}
struct PID *pid_init(float *params) {
return raw_pid_init(params[0], params[1], params[2], params[3], params[4], params[5], params[6], max_error,
max_delta_error, min_pwm_output, middle_pwm_output, max_pwm_output);
}
int round_user(float parameter) {
if ((int) (parameter * 10.0) % 10 >= 5)
return parameter + 1;
else
return parameter;
}
int limit(int value, int max_limit, int min_limit) {
if (value > max_limit)
return max_limit;
if (value < min_limit)
return min_limit;
return value;
}
float fuzzy_pid_control(float real, float idea, struct PID *pid) {
pid->last_error = pid->current_error;
pid->current_error = idea - real;
float delta_error = pid->current_error - pid->last_error;
#ifdef fuzzy_pid_dead_zone
if (pid->current_error < pid->dead_zone && pid->current_error > -pid->dead_zone) {
pid->current_error = 0;
} else {
if (pid->current_error > pid->dead_zone)
pid->current_error = pid->current_error - pid->dead_zone;
else {
if (pid->current_error < -pid->dead_zone)
pid->current_error = pid->current_error + pid->dead_zone;
}
}
#endif
fuzzy_control(pid->current_error / pid->error_max * 3.0f, delta_error / pid->delta_error_max * 3.0f,
pid->fuzzy_struct);
pid->delta_kp = pid->fuzzy_struct->output[0] / 3.0f * pid->delta_kp_max + pid->kp;
if (pid->fuzzy_struct->output_num >= 2)
pid->delta_ki = pid->fuzzy_struct->output[1] / 3.0f * pid->delta_ki_max;
else pid->delta_ki = 0;
if (pid->fuzzy_struct->output_num >= 3)
pid->delta_kd = pid->fuzzy_struct->output[2] / 3.0f * pid->delta_kd_max;
else pid->delta_ki = 0;
#ifdef fuzzy_pid_debug_print
printf("kp : %f, ki : %f, kd : %f\n", kp, ki, kd);
#endif
pid->intergral += (pid->ki + pid->delta_ki) * pid->current_error;
#ifdef fuzzy_pid_integral_limit
if (pid->intergral > pid->intergral_limit)
pid->intergral = pid->intergral_limit;
else {
if (pid->intergral < -pid->intergral_limit)
pid->intergral = -pid->intergral_limit;
}
#endif
pid->output = (pid->kp + pid->delta_kp) * pid->current_error + pid->intergral +
(pid->kd + pid->delta_kd) * (pid->current_error - pid->last_error);
pid->output += pid->feed_forward * (float) idea;
return pid->output;
}
float pid_control(float real, float idea, struct PID *pid) {
pid->last_error = pid->current_error;
pid->current_error = idea - real;
#ifdef pid_dead_zone
if (pid->current_error < pid->dead_zone && pid->current_error > -pid->dead_zone) {
pid->current_error = 0;
} else {
if (pid->current_error > pid->dead_zone)
pid->current_error = pid->current_error - pid->dead_zone;
else {
if (pid->current_error < -pid->dead_zone)
pid->current_error = pid->current_error + pid->dead_zone;
}
}
#endif
#ifdef pid_debug_print
printf("kp : %f, ki : %f, kd : %f\n", kp, ki, kd);
#endif
pid->intergral += (pid->ki) * pid->current_error;
#ifdef pid_integral_limit
if (pid->intergral > pid->intergral_limit)
pid->intergral = pid->intergral_limit;
else {
if (pid->intergral < -pid->intergral_limit)
pid->intergral = -pid->intergral_limit;
}
#endif
float linear_adaptive_kp = 1;
if (pid->linear_adaptive_kp > 1e-4)
linear_adaptive_kp =
(1 - pid->linear_adaptive_kp) * pid->current_error / pid->error_max + pid->linear_adaptive_kp;
pid->output = pid->kp * linear_adaptive_kp * pid->current_error + pid->intergral +
(pid->kd) * (pid->current_error - pid->last_error);
pid->output += pid->feed_forward * (float) idea;
return pid->output;
}
void delete_pid(struct PID *pid) {
if (pid->fuzzy_struct != NULL) {
delete_fuzzy(pid->fuzzy_struct);
}
free(pid);
}
void delete_pid_vector(struct PID **pid_vector, unsigned int count) {
for (unsigned int i = 0; i < count; ++i) {
delete_pid(pid_vector[i]);
}
free(pid_vector);
}
struct PID **pid_vector_init(float params[][pid_params_count], unsigned int count) {
struct PID **pid = (struct PID **) malloc(sizeof(struct PID *) * count);
for (unsigned int i = 0; i < count; ++i) {
pid[i] = pid_init(params[i]);
}
return pid;
}
struct PID **
fuzzy_pid_vector_init(float params[][pid_params_count], float delta_k, unsigned int mf_type, unsigned int fo_type,
unsigned int df_type, int *mf_params, int rule_base[][qf_default],
unsigned int count) {
struct PID **pid = (struct PID **) malloc(sizeof(struct PID *) * count);
for (unsigned int i = 0; i < count; ++i) {
pid[i] = fuzzy_pid_init(params[i], delta_k, mf_type, fo_type, df_type, mf_params, rule_base);
}
return pid;
}
int direct_control(int zero_value, int offset_value, bool direct) {
if (direct == true) {
return zero_value + offset_value;
} else {
return zero_value - offset_value;
}
}
int fuzzy_pid_motor_pwd_output(float real, float idea, bool direct, struct PID *pid) {
return limit(direct_control(pid->output_middle_value, fuzzy_pid_control(real, idea, pid), direct),
pid->output_max_value, pid->output_min_value);
}
int pid_motor_pwd_output(float real, float idea, bool direct, struct PID *pid) {
return limit(direct_control(pid->output_middle_value, pid_control(real, idea, pid), direct), pid->output_max_value,
pid->output_min_value);
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。