代码拉取完成,页面将自动刷新
"""This script is the training script for Deep3DFaceRecon_pytorch
"""
import os
import time
import numpy as np
import torch
from options.train_options import TrainOptions
from data import create_dataset
from models import create_model
from util.visualizer import MyVisualizer
from util.util import genvalconf
import torch.multiprocessing as mp
import torch.distributed as dist
def setup(rank, world_size, port):
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = port
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=world_size)
def cleanup():
dist.destroy_process_group()
def main(rank, world_size, train_opt):
val_opt = genvalconf(train_opt, isTrain=False)
device = torch.device(rank)
torch.cuda.set_device(device)
use_ddp = train_opt.use_ddp
if use_ddp:
setup(rank, world_size, train_opt.ddp_port)
train_dataset, val_dataset = create_dataset(train_opt, rank=rank), create_dataset(val_opt, rank=rank)
train_dataset_batches, val_dataset_batches = \
len(train_dataset) // train_opt.batch_size, len(val_dataset) // val_opt.batch_size
model = create_model(train_opt) # create a model given train_opt.model and other options
model.setup(train_opt)
model.device = device
model.parallelize()
if rank == 0:
print('The batch number of training images = %d\n, \
the batch number of validation images = %d'% (train_dataset_batches, val_dataset_batches))
model.print_networks(train_opt.verbose)
visualizer = MyVisualizer(train_opt) # create a visualizer that display/save images and plots
total_iters = train_dataset_batches * (train_opt.epoch_count - 1) # the total number of training iterations
t_data = 0
t_val = 0
optimize_time = 0.1
batch_size = 1 if train_opt.display_per_batch else train_opt.batch_size
if use_ddp:
dist.barrier()
times = []
for epoch in range(train_opt.epoch_count, train_opt.n_epochs + 1): # outer loop for different epochs; we save the model by <epoch_count>, <epoch_count>+<save_latest_freq>
epoch_start_time = time.time() # timer for entire epoch
iter_data_time = time.time() # timer for train_data loading per iteration
epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch
train_dataset.set_epoch(epoch)
for i, train_data in enumerate(train_dataset): # inner loop within one epoch
iter_start_time = time.time() # timer for computation per iteration
if total_iters % train_opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
total_iters += batch_size
epoch_iter += batch_size
torch.cuda.synchronize()
optimize_start_time = time.time()
model.set_input(train_data) # unpack train_data from dataset and apply preprocessing
model.optimize_parameters() # calculate loss functions, get gradients, update network weights
torch.cuda.synchronize()
optimize_time = (time.time() - optimize_start_time) / batch_size * 0.005 + 0.995 * optimize_time
if use_ddp:
dist.barrier()
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.display_freq == 0): # display images on visdom and save images to a HTML file
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch,
save_results=True,
add_image=train_opt.add_image)
# (total_iters == batch_size or total_iters % train_opt.evaluation_freq == 0)
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.print_freq == 0): # print training losses and save logging information to the disk
losses = model.get_current_losses()
visualizer.print_current_losses(epoch, epoch_iter, losses, optimize_time, t_data)
visualizer.plot_current_losses(total_iters, losses)
if total_iters == batch_size or total_iters % train_opt.evaluation_freq == 0:
with torch.no_grad():
torch.cuda.synchronize()
val_start_time = time.time()
losses_avg = {}
model.eval()
for j, val_data in enumerate(val_dataset):
model.set_input(val_data)
model.optimize_parameters(isTrain=False)
if rank == 0 and j < train_opt.vis_batch_nums:
model.compute_visuals()
visualizer.display_current_results(model.get_current_visuals(), total_iters, epoch,
dataset='val', save_results=True, count=j * val_opt.batch_size,
add_image=train_opt.add_image)
if j < train_opt.eval_batch_nums:
losses = model.get_current_losses()
for key, value in losses.items():
losses_avg[key] = losses_avg.get(key, 0) + value
for key, value in losses_avg.items():
losses_avg[key] = value / min(train_opt.eval_batch_nums, val_dataset_batches)
torch.cuda.synchronize()
eval_time = time.time() - val_start_time
if rank == 0:
visualizer.print_current_losses(epoch, epoch_iter, losses_avg, eval_time, t_data, dataset='val') # visualize training results
visualizer.plot_current_losses(total_iters, losses_avg, dataset='val')
model.train()
if use_ddp:
dist.barrier()
if rank == 0 and (total_iters == batch_size or total_iters % train_opt.save_latest_freq == 0): # cache our latest model every <save_latest_freq> iterations
print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters))
print(train_opt.name) # it's useful to occasionally show the experiment name on console
save_suffix = 'iter_%d' % total_iters if train_opt.save_by_iter else 'latest'
model.save_networks(save_suffix)
if use_ddp:
dist.barrier()
iter_data_time = time.time()
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, train_opt.n_epochs, time.time() - epoch_start_time))
model.update_learning_rate() # update learning rates at the end of every epoch.
if rank == 0 and epoch % train_opt.save_epoch_freq == 0: # cache our model every <save_epoch_freq> epochs
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters))
model.save_networks('latest')
model.save_networks(epoch)
if use_ddp:
dist.barrier()
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
train_opt = TrainOptions().parse() # get training options
world_size = train_opt.world_size
if train_opt.use_ddp:
mp.spawn(main, args=(world_size, train_opt), nprocs=world_size, join=True)
else:
main(0, world_size, train_opt)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。