代码拉取完成,页面将自动刷新
同步操作将从 Jornason/backtesting 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
from backtesting.cta_backtesting import BacktestingEngine
from backtesting.optimization_setting import OptimizationSetting
from strategies.bolling_strategy import BollingStrategy
import csv
import os
import time
# 遗传算法库
from gaft import GAEngine
from gaft.components import BinaryIndividual
from gaft.components import Population
from gaft.operators import TournamentSelection
from gaft.operators import UniformCrossover
from gaft.operators import FlipBitBigMutation
from gaft.analysis.fitness_store import FitnessStore
from gaft.analysis.console_output import ConsoleOutput
class GaOptimizationEngine():
"""
参数优化引擎
"""
def __init__(self,
target_name: str,
strategy_class:str,
symbol: str,
exchange:str,
interval: str,
start: str,
end: str,
rate: float,
slippage: float,
size: float,
capital: int,
backtest_period:list,
path:str,
):
"""
设置参数优化引擎参数
:param target_name:优化指标(total_return,max_drawdown,sharpe_ratio)
:param strategy_class:策略类名
:param symbol:交易对
:param exchange:交易所
:param interval:原始数据周期
:param start:开始日期
:param end:结束日期
:param rate:手续费
:param slippage:滑点
:param size:每次下单量
:param capital:初始资金量
"""
self.target_name = target_name
self.strategy_class = strategy_class
self.symbol = symbol
self.exchange = exchange
self.start = start
self.end = end
#初始化回测引擎
self.engine = BacktestingEngine()
self.engine.set_parameters(
symbol=symbol,
exchange=exchange,
interval=interval,
start=start,
end=end,
rate=rate,
slippage=slippage,
size=size,
capital=capital,
backtest_period=backtest_period
)
#载入历史数据,并转换周期
self.engine.load_data(path)
def optimize(self,
setting: list,
backtest_period:str,
):
"""
执行策略参数优化
:param setting: 策略参数
:param backtest_period: 策略周期
:return:
"""
self.engine.init_backtesting()
self.engine.add_strategy(self.strategy_class,backtest_period,setting)
self.engine.run_backtesting()
self.engine.calculate_result()
statistics = self.engine.calculate_statistics(output=False)
target_value = statistics[self.target_name]
return (backtest_period,str(setting), target_value, statistics)
def output_results(self,results):
"""
输出参数优化结果,按优化指标排序,并将各参数结果输出到CSV文件
:param results: 回测结果列表
:return:
"""
result_values = [result.get() for result in results]
result_values.sort(reverse=True, key=lambda result: result[2])
if(os.path.exists("../results/{strategy}"
.format(strategy=self.strategy_class.__name__)) is False):
os.makedirs("../results/{strategy}"
.format(strategy=self.strategy_class.__name__))
file_name = "../results/{strategy}/{exchange}_{symbol}_{start}_{end}.csv" \
.format(strategy=self.strategy_class.__name__,
exchange=self.exchange,
symbol=self.symbol,
start=self.start.split(" ")[0].replace("-",""),
end=self.end.split(" ")[0].replace("-",""))
out = open(file_name, 'a', newline='')
csv_writer = csv.writer(out, dialect='excel')
csv_writer.writerow(['周期', '参数', '起始资金', '结束资金', '总收益率', '年化收益', '最大回撤'
, '百分比最大回撤', '总交易日', '盈利交易日', '亏损交易日', '总盈亏'
, '收益标准差', 'Sharpe Ratio', '收益回撤比'
, '总手续费', '总滑点', '总成交金额', '总成交笔数', '日均盈亏', '日均手续费'
, '日均成交金额', '日均成交笔数', '日均收益率'
])
for value in result_values:
if(value[2] != 0):
data = [value[0], value[1], value[3]['capital'],
value[3]['end_balance'], value[3]['total_return'], value[3]['annual_return'],
value[3]['max_drawdown'], value[3]['max_ddpercent'], value[3]['total_days'],
value[3]['profit_days'], value[3]['loss_days'], value[3]['total_net_pnl'],
value[3]['return_std'], value[3]['sharpe_ratio'], value[3]['return_drawdown_ratio'],
value[3]['total_commission'], value[3]['total_slippage'], value[3]['total_turnover'],
value[3]['total_trade_count'], value[3]['daily_net_pnl'], value[3]['daily_commission'],
value[3]['daily_turnover'], value[3]['daily_trade_count'], value[3]['daily_return']]
csv_writer.writerow(data)
msg = f"周期:{value[0]},参数:{value[1]}, 目标:{value[2]}"
print(msg)
if __name__ == '__main__':
# 获取当前程序的地址
current_file = __file__
# 程序根目录地址
root_path = os.path.abspath(os.path.join(current_file, os.pardir, os.pardir))
path = root_path + '/backtesting/historical_data/okswap_eth_usd_td_5min_data1.csv'
start_time = time.time()
#回测多少代,越多效果越好,计算时间越长
generation_num = 100
#回测交易对列表
symbol_list = [
["ETHUSD",1,10000],
]
#回测周期列表
period_list = ["15T","30T","60T"]
#回测时间,用start_date和end_date之间的数据进行回测。
#再选取回测结果最优的10条,再验证end_date和check_date之间的结果
start_date = "2019-09-01 00:00:00"
end_date = "2019-10-01 00:00:00"
#逐个交易对进行参数优化
for symbol in symbol_list:
optimization_setting = OptimizationSetting()
#设置回测周期,可设置多个周期
optimization_setting.set_period(period_list)
#设置参数优化目标,默认为按收益率
optimization_setting.set_target(target_name="total_return")
target_name = optimization_setting.target_name
#设置各回测参数的范围和步长
param1 = (100,1000)
param2 = (2.0,4.0)
stop_lose_pct = (5,15)
#生成回测参数范围
para_range = [param1,param2,stop_lose_pct]
for period in period_list:
# 初始化参数优化引擎
optimizatioin_engine = GaOptimizationEngine(
target_name = target_name,
strategy_class = BollingStrategy,
symbol = symbol[0],
exchange = "okex",
interval = "1m",
start = start_date,
end = end_date,
rate = 0.001,
slippage = 0,
size = symbol[1],
capital = symbol[2],
backtest_period = [period],
path = path
)
# Define population.
indv_template = BinaryIndividual(ranges=para_range, eps=0.001)
population = Population(indv_template=indv_template, size=50).init()
# Create genetic operators.
# selection = RouletteWheelSelection()
selection = TournamentSelection()
crossover = UniformCrossover(pc=0.8, pe=0.5)
mutation = FlipBitBigMutation(pm=0.1, pbm=0.55, alpha=0.6)
# Create genetic algorithm engine.
# Here we pass all built-in analysis to engine constructor.
engine = GAEngine(population=population, selection=selection,
crossover=crossover, mutation=mutation,
analysis=[ConsoleOutput, FitnessStore])
# Define fitness function.
@engine.fitness_register
def fitness(indv):
para = indv.solution
result = optimizatioin_engine.optimize(para,period)
if (result is None):
return 0.01
else:
return float(result[2])
engine.run(generation_num)
end_time = time.time()
print(f"总耗时:{int((end_time-start_time)/60)}分钟")
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。