代码拉取完成,页面将自动刷新
同步操作将从 云金杞/pyfolio 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
#
# Copyright 2018 Quantopian, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
import datetime
from collections import OrderedDict
from functools import wraps
import empyrical as ep
import matplotlib
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pytz
import scipy as sp
from matplotlib import figure
from matplotlib.backends.backend_agg import FigureCanvasAgg
from matplotlib.ticker import FuncFormatter
from . import _seaborn as sns
from . import capacity
from . import pos
from . import timeseries
from . import txn
from . import utils
from .utils import (APPROX_BDAYS_PER_MONTH,
MM_DISPLAY_UNIT)
def customize(func):
"""
Decorator to set plotting context and axes style during function call.
"""
@wraps(func)
def call_w_context(*args, **kwargs):
set_context = kwargs.pop('set_context', True)
if set_context:
with plotting_context(), axes_style():
return func(*args, **kwargs)
else:
return func(*args, **kwargs)
return call_w_context
def plotting_context(context='notebook', font_scale=1.5, rc=None):
"""
Create pyfolio default plotting style context.
Under the hood, calls and returns seaborn.plotting_context() with
some custom settings. Usually you would use in a with-context.
Parameters
----------
context : str, optional
Name of seaborn context.
font_scale : float, optional
Scale font by factor font_scale.
rc : dict, optional
Config flags.
By default, {'lines.linewidth': 1.5}
is being used and will be added to any
rc passed in, unless explicitly overriden.
Returns
-------
seaborn plotting context
Example
-------
>>> with pyfolio.plotting.plotting_context(font_scale=2):
>>> pyfolio.create_full_tear_sheet(..., set_context=False)
See also
--------
For more information, see seaborn.plotting_context().
"""
if rc is None:
rc = {}
rc_default = {'lines.linewidth': 1.5}
# Add defaults if they do not exist
for name, val in rc_default.items():
rc.setdefault(name, val)
return sns.plotting_context(context=context, font_scale=font_scale, rc=rc)
def axes_style(style='darkgrid', rc=None):
"""
Create pyfolio default axes style context.
Under the hood, calls and returns seaborn.axes_style() with
some custom settings. Usually you would use in a with-context.
Parameters
----------
style : str, optional
Name of seaborn style.
rc : dict, optional
Config flags.
Returns
-------
seaborn plotting context
Example
-------
>>> with pyfolio.plotting.axes_style(style='whitegrid'):
>>> pyfolio.create_full_tear_sheet(..., set_context=False)
See also
--------
For more information, see seaborn.plotting_context().
"""
if rc is None:
rc = {}
rc_default = {}
# Add defaults if they do not exist
for name, val in rc_default.items():
rc.setdefault(name, val)
return sns.axes_style(style=style, rc=rc)
def plot_monthly_returns_heatmap(returns, ax=None, **kwargs):
"""
Plots a heatmap of returns by month.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
monthly_ret_table = ep.aggregate_returns(returns, 'monthly')
monthly_ret_table = monthly_ret_table.unstack().round(3)
sns.heatmap(
monthly_ret_table.fillna(0) *
100.0,
annot=True,
annot_kws={"size": 9},
alpha=1.0,
center=0.0,
cbar=False,
cmap=matplotlib.cm.RdYlGn,
ax=ax, **kwargs)
ax.set_ylabel('Year')
ax.set_xlabel('Month')
ax.set_title("Monthly returns (%)")
return ax
def plot_annual_returns(returns, ax=None, **kwargs):
"""
Plots a bar graph of returns by year.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
x_axis_formatter = FuncFormatter(utils.percentage)
ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter))
ax.tick_params(axis='x', which='major')
ann_ret_df = pd.DataFrame(
ep.aggregate_returns(
returns,
'yearly'))
ax.axvline(
100 *
ann_ret_df.values.mean(),
color='steelblue',
linestyle='--',
lw=4,
alpha=0.7)
(100 * ann_ret_df.sort_index(ascending=False)
).plot(ax=ax, kind='barh', alpha=0.70, **kwargs)
ax.axvline(0.0, color='black', linestyle='-', lw=3)
ax.set_ylabel('Year')
ax.set_xlabel('Returns')
ax.set_title("Annual returns")
ax.legend(['Mean'], frameon=True, framealpha=0.5)
return ax
def plot_monthly_returns_dist(returns, ax=None, **kwargs):
"""
Plots a distribution of monthly returns.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
x_axis_formatter = FuncFormatter(utils.percentage)
ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter))
ax.tick_params(axis='x', which='major')
monthly_ret_table = ep.aggregate_returns(returns, 'monthly')
ax.hist(
100 * monthly_ret_table,
color='orangered',
alpha=0.80,
bins=20,
**kwargs)
ax.axvline(
100 * monthly_ret_table.mean(),
color='gold',
linestyle='--',
lw=4,
alpha=1.0)
ax.axvline(0.0, color='black', linestyle='-', lw=3, alpha=0.75)
ax.legend(['Mean'], frameon=True, framealpha=0.5)
ax.set_ylabel('Number of months')
ax.set_xlabel('Returns')
ax.set_title("Distribution of monthly returns")
return ax
def plot_holdings(returns, positions, legend_loc='best', ax=None, **kwargs):
"""
Plots total amount of stocks with an active position, either short
or long. Displays daily total, daily average per month, and
all-time daily average.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
positions : pd.DataFrame, optional
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
positions = positions.copy().drop('cash', axis='columns')
df_holdings = positions.replace(0, np.nan).count(axis=1)
df_holdings_by_month = df_holdings.resample('1M').mean()
df_holdings.plot(color='steelblue', alpha=0.6, lw=0.5, ax=ax, **kwargs)
df_holdings_by_month.plot(
color='orangered',
lw=2,
ax=ax,
**kwargs)
ax.axhline(
df_holdings.values.mean(),
color='steelblue',
ls='--',
lw=3)
ax.set_xlim((returns.index[0], returns.index[-1]))
leg = ax.legend(['Daily holdings',
'Average daily holdings, by month',
'Average daily holdings, overall'],
loc=legend_loc, frameon=True,
framealpha=0.5)
leg.get_frame().set_edgecolor('black')
ax.set_title('Total holdings')
ax.set_ylabel('Holdings')
ax.set_xlabel('')
return ax
def plot_long_short_holdings(returns, positions,
legend_loc='upper left', ax=None, **kwargs):
"""
Plots total amount of stocks with an active position, breaking out
short and long into transparent filled regions.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
positions : pd.DataFrame, optional
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
positions = positions.drop('cash', axis='columns')
positions = positions.replace(0, np.nan)
df_longs = positions[positions > 0].count(axis=1)
df_shorts = positions[positions < 0].count(axis=1)
lf = ax.fill_between(df_longs.index, 0, df_longs.values,
color='g', alpha=0.5, lw=2.0)
sf = ax.fill_between(df_shorts.index, 0, df_shorts.values,
color='r', alpha=0.5, lw=2.0)
bf = patches.Rectangle([0, 0], 1, 1, color='darkgoldenrod')
leg = ax.legend([lf, sf, bf],
['Long (max: %s, min: %s)' % (df_longs.max(),
df_longs.min()),
'Short (max: %s, min: %s)' % (df_shorts.max(),
df_shorts.min()),
'Overlap'], loc=legend_loc, frameon=True,
framealpha=0.5)
leg.get_frame().set_edgecolor('black')
ax.set_xlim((returns.index[0], returns.index[-1]))
ax.set_title('Long and short holdings')
ax.set_ylabel('Holdings')
ax.set_xlabel('')
return ax
def plot_drawdown_periods(returns, top=10, ax=None, **kwargs):
"""
Plots cumulative returns highlighting top drawdown periods.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
top : int, optional
Amount of top drawdowns periods to plot (default 10).
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
df_cum_rets = ep.cum_returns(returns, starting_value=1.0)
df_drawdowns = timeseries.gen_drawdown_table(returns, top=top)
df_cum_rets.plot(ax=ax, **kwargs)
lim = ax.get_ylim()
colors = sns.cubehelix_palette(len(df_drawdowns))[::-1]
for i, (peak, recovery) in df_drawdowns[
['Peak date', 'Recovery date']].iterrows():
if pd.isnull(recovery):
recovery = returns.index[-1]
ax.fill_between((peak, recovery),
lim[0],
lim[1],
alpha=.4,
color=colors[i])
ax.set_ylim(lim)
ax.set_title('Top %i drawdown periods' % top)
ax.set_ylabel('Cumulative returns')
ax.legend(['Portfolio'], loc='upper left',
frameon=True, framealpha=0.5)
ax.set_xlabel('')
return ax
def plot_drawdown_underwater(returns, ax=None, **kwargs):
"""
Plots how far underwaterr returns are over time, or plots current
drawdown vs. date.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.percentage)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
df_cum_rets = ep.cum_returns(returns, starting_value=1.0)
running_max = np.maximum.accumulate(df_cum_rets)
underwater = -100 * ((running_max - df_cum_rets) / running_max)
(underwater).plot(ax=ax, kind='area', color='coral', alpha=0.7, **kwargs)
ax.set_ylabel('Drawdown')
ax.set_title('Underwater plot')
ax.set_xlabel('')
return ax
def plot_perf_stats(returns, factor_returns, ax=None):
"""
Create box plot of some performance metrics of the strategy.
The width of the box whiskers is determined by a bootstrap.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series
Daily noncumulative returns of the benchmark factor to which betas are
computed. Usually a benchmark such as market returns.
- This is in the same style as returns.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
bootstrap_values = timeseries.perf_stats_bootstrap(returns,
factor_returns,
return_stats=False)
bootstrap_values = bootstrap_values.drop('Kurtosis', axis='columns')
sns.boxplot(data=bootstrap_values, orient='h', ax=ax)
return ax
STAT_FUNCS_PCT = [
'Annual return',
'Cumulative returns',
'Annual volatility',
'Max drawdown',
'Daily value at risk',
'Daily turnover'
]
def show_perf_stats(returns, factor_returns=None, positions=None,
transactions=None, turnover_denom='AGB',
live_start_date=None, bootstrap=False,
header_rows=None):
"""
Prints some performance metrics of the strategy.
- Shows amount of time the strategy has been run in backtest and
out-of-sample (in live trading).
- Shows Omega ratio, max drawdown, Calmar ratio, annual return,
stability, Sharpe ratio, annual volatility, alpha, and beta.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series, optional
Daily noncumulative returns of the benchmark factor to which betas are
computed. Usually a benchmark such as market returns.
- This is in the same style as returns.
positions : pd.DataFrame, optional
Daily net position values.
- See full explanation in create_full_tear_sheet.
transactions : pd.DataFrame, optional
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet
turnover_denom : str, optional
Either AGB or portfolio_value, default AGB.
- See full explanation in txn.get_turnover.
live_start_date : datetime, optional
The point in time when the strategy began live trading, after
its backtest period.
bootstrap : boolean, optional
Whether to perform bootstrap analysis for the performance
metrics.
- For more information, see timeseries.perf_stats_bootstrap
header_rows : dict or OrderedDict, optional
Extra rows to display at the top of the displayed table.
"""
if bootstrap:
perf_func = timeseries.perf_stats_bootstrap
else:
perf_func = timeseries.perf_stats
perf_stats_all = perf_func(
returns,
factor_returns=factor_returns,
positions=positions,
transactions=transactions,
turnover_denom=turnover_denom)
date_rows = OrderedDict()
if len(returns.index) > 0:
date_rows['Start date'] = returns.index[0].strftime('%Y-%m-%d')
date_rows['End date'] = returns.index[-1].strftime('%Y-%m-%d')
if live_start_date is not None:
live_start_date = ep.utils.get_utc_timestamp(live_start_date)
returns_is = returns[returns.index < live_start_date]
returns_oos = returns[returns.index >= live_start_date]
positions_is = None
positions_oos = None
transactions_is = None
transactions_oos = None
if positions is not None:
positions_is = positions[positions.index < live_start_date]
positions_oos = positions[positions.index >= live_start_date]
if transactions is not None:
transactions_is = transactions[(transactions.index <
live_start_date)]
transactions_oos = transactions[(transactions.index >
live_start_date)]
perf_stats_is = perf_func(
returns_is,
factor_returns=factor_returns,
positions=positions_is,
transactions=transactions_is,
turnover_denom=turnover_denom)
perf_stats_oos = perf_func(
returns_oos,
factor_returns=factor_returns,
positions=positions_oos,
transactions=transactions_oos,
turnover_denom=turnover_denom)
if len(returns.index) > 0:
date_rows['In-sample months'] = int(len(returns_is) /
APPROX_BDAYS_PER_MONTH)
date_rows['Out-of-sample months'] = int(len(returns_oos) /
APPROX_BDAYS_PER_MONTH)
perf_stats = pd.concat(OrderedDict([
('In-sample', perf_stats_is),
('Out-of-sample', perf_stats_oos),
('All', perf_stats_all),
]), axis=1)
else:
if len(returns.index) > 0:
date_rows['Total months'] = int(len(returns) /
APPROX_BDAYS_PER_MONTH)
perf_stats = pd.DataFrame(perf_stats_all, columns=['Backtest'])
for column in perf_stats.columns:
for stat, value in perf_stats[column].iteritems():
if stat in STAT_FUNCS_PCT:
perf_stats.loc[stat, column] = str(np.round(value * 100,
1)) + '%'
if header_rows is None:
header_rows = date_rows
else:
header_rows = OrderedDict(header_rows)
header_rows.update(date_rows)
utils.print_table(
perf_stats,
float_format='{0:.2f}'.format,
header_rows=header_rows,
)
def plot_returns(returns,
live_start_date=None,
ax=None):
"""
Plots raw returns over time.
Backtest returns are in green, and out-of-sample (live trading)
returns are in red.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
live_start_date : datetime, optional
The date when the strategy began live trading, after
its backtest period. This date should be normalized.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
ax.set_label('')
ax.set_ylabel('Returns')
if live_start_date is not None:
live_start_date = ep.utils.get_utc_timestamp(live_start_date)
is_returns = returns.loc[returns.index < live_start_date]
oos_returns = returns.loc[returns.index >= live_start_date]
is_returns.plot(ax=ax, color='g')
oos_returns.plot(ax=ax, color='r')
else:
returns.plot(ax=ax, color='g')
return ax
def plot_rolling_returns(returns,
factor_returns=None,
live_start_date=None,
logy=False,
cone_std=None,
legend_loc='best',
volatility_match=False,
cone_function=timeseries.forecast_cone_bootstrap,
ax=None, **kwargs):
"""
Plots cumulative rolling returns versus some benchmarks'.
Backtest returns are in green, and out-of-sample (live trading)
returns are in red.
Additionally, a non-parametric cone plot may be added to the
out-of-sample returns region.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series, optional
Daily noncumulative returns of the benchmark factor to which betas are
computed. Usually a benchmark such as market returns.
- This is in the same style as returns.
live_start_date : datetime, optional
The date when the strategy began live trading, after
its backtest period. This date should be normalized.
logy : bool, optional
Whether to log-scale the y-axis.
cone_std : float, or tuple, optional
If float, The standard deviation to use for the cone plots.
If tuple, Tuple of standard deviation values to use for the cone plots
- See timeseries.forecast_cone_bounds for more details.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
volatility_match : bool, optional
Whether to normalize the volatility of the returns to those of the
benchmark returns. This helps compare strategies with different
volatilities. Requires passing of benchmark_rets.
cone_function : function, optional
Function to use when generating forecast probability cone.
The function signiture must follow the form:
def cone(in_sample_returns (pd.Series),
days_to_project_forward (int),
cone_std= (float, or tuple),
starting_value= (int, or float))
See timeseries.forecast_cone_bootstrap for an example.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
ax.set_xlabel('')
ax.set_ylabel('Cumulative returns')
ax.set_yscale('log' if logy else 'linear')
if volatility_match and factor_returns is None:
raise ValueError('volatility_match requires passing of '
'factor_returns.')
elif volatility_match and factor_returns is not None:
bmark_vol = factor_returns.loc[returns.index].std()
returns = (returns / returns.std()) * bmark_vol
cum_rets = ep.cum_returns(returns, 1.0)
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
if factor_returns is not None:
cum_factor_returns = ep.cum_returns(
factor_returns[cum_rets.index], 1.0)
cum_factor_returns.plot(lw=2, color='gray',
label=factor_returns.name, alpha=0.60,
ax=ax, **kwargs)
if live_start_date is not None:
live_start_date = ep.utils.get_utc_timestamp(live_start_date)
is_cum_returns = cum_rets.loc[cum_rets.index < live_start_date]
oos_cum_returns = cum_rets.loc[cum_rets.index >= live_start_date]
else:
is_cum_returns = cum_rets
oos_cum_returns = pd.Series([])
is_cum_returns.plot(lw=3, color='forestgreen', alpha=0.6,
label='Backtest', ax=ax, **kwargs)
if len(oos_cum_returns) > 0:
oos_cum_returns.plot(lw=4, color='red', alpha=0.6,
label='Live', ax=ax, **kwargs)
if cone_std is not None:
if isinstance(cone_std, (float, int)):
cone_std = [cone_std]
is_returns = returns.loc[returns.index < live_start_date]
cone_bounds = cone_function(
is_returns,
len(oos_cum_returns),
cone_std=cone_std,
starting_value=is_cum_returns[-1])
cone_bounds = cone_bounds.set_index(oos_cum_returns.index)
for std in cone_std:
ax.fill_between(cone_bounds.index,
cone_bounds[float(std)],
cone_bounds[float(-std)],
color='steelblue', alpha=0.5)
if legend_loc is not None:
ax.legend(loc=legend_loc, frameon=True, framealpha=0.5)
ax.axhline(1.0, linestyle='--', color='black', lw=2)
return ax
def plot_rolling_beta(returns, factor_returns, legend_loc='best',
ax=None, **kwargs):
"""
Plots the rolling 6-month and 12-month beta versus date.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series
Daily noncumulative returns of the benchmark factor to which betas are
computed. Usually a benchmark such as market returns.
- This is in the same style as returns.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
ax.set_title("Rolling portfolio beta to " + str(factor_returns.name))
ax.set_ylabel('Beta')
rb_1 = timeseries.rolling_beta(
returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 6)
rb_1.plot(color='steelblue', lw=3, alpha=0.6, ax=ax, **kwargs)
rb_2 = timeseries.rolling_beta(
returns, factor_returns, rolling_window=APPROX_BDAYS_PER_MONTH * 12)
rb_2.plot(color='grey', lw=3, alpha=0.4, ax=ax, **kwargs)
ax.axhline(rb_1.mean(), color='steelblue', linestyle='--', lw=3)
ax.axhline(0.0, color='black', linestyle='-', lw=2)
ax.set_xlabel('')
ax.legend(['6-mo',
'12-mo'],
loc=legend_loc, frameon=True, framealpha=0.5)
ax.set_ylim((-1.0, 1.0))
return ax
def plot_rolling_volatility(returns, factor_returns=None,
rolling_window=APPROX_BDAYS_PER_MONTH * 6,
legend_loc='best', ax=None, **kwargs):
"""
Plots the rolling volatility versus date.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series, optional
Daily noncumulative returns of the benchmark factor to which betas are
computed. Usually a benchmark such as market returns.
- This is in the same style as returns.
rolling_window : int, optional
The days window over which to compute the volatility.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
rolling_vol_ts = timeseries.rolling_volatility(
returns, rolling_window)
rolling_vol_ts.plot(alpha=.7, lw=3, color='orangered', ax=ax,
**kwargs)
if factor_returns is not None:
rolling_vol_ts_factor = timeseries.rolling_volatility(
factor_returns, rolling_window)
rolling_vol_ts_factor.plot(alpha=.7, lw=3, color='grey', ax=ax,
**kwargs)
ax.set_title('Rolling volatility (6-month)')
ax.axhline(
rolling_vol_ts.mean(),
color='steelblue',
linestyle='--',
lw=3)
ax.axhline(0.0, color='black', linestyle='-', lw=2)
ax.set_ylabel('Volatility')
ax.set_xlabel('')
if factor_returns is None:
ax.legend(['Volatility', 'Average volatility'],
loc=legend_loc, frameon=True, framealpha=0.5)
else:
ax.legend(['Volatility', 'Benchmark volatility', 'Average volatility'],
loc=legend_loc, frameon=True, framealpha=0.5)
return ax
def plot_rolling_sharpe(returns, factor_returns=None,
rolling_window=APPROX_BDAYS_PER_MONTH * 6,
legend_loc='best', ax=None, **kwargs):
"""
Plots the rolling Sharpe ratio versus date.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
factor_returns : pd.Series, optional
Daily noncumulative returns of the benchmark factor for
which the benchmark rolling Sharpe is computed. Usually
a benchmark such as market returns.
- This is in the same style as returns.
rolling_window : int, optional
The days window over which to compute the sharpe ratio.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
rolling_sharpe_ts = timeseries.rolling_sharpe(
returns, rolling_window)
rolling_sharpe_ts.plot(alpha=.7, lw=3, color='orangered', ax=ax,
**kwargs)
if factor_returns is not None:
rolling_sharpe_ts_factor = timeseries.rolling_sharpe(
factor_returns, rolling_window)
rolling_sharpe_ts_factor.plot(alpha=.7, lw=3, color='grey', ax=ax,
**kwargs)
ax.set_title('Rolling Sharpe ratio (6-month)')
ax.axhline(
rolling_sharpe_ts.mean(),
color='steelblue',
linestyle='--',
lw=3)
ax.axhline(0.0, color='black', linestyle='-', lw=3)
ax.set_ylabel('Sharpe ratio')
ax.set_xlabel('')
if factor_returns is None:
ax.legend(['Sharpe', 'Average'],
loc=legend_loc, frameon=True, framealpha=0.5)
else:
ax.legend(['Sharpe', 'Benchmark Sharpe', 'Average'],
loc=legend_loc, frameon=True, framealpha=0.5)
return ax
def plot_gross_leverage(returns, positions, ax=None, **kwargs):
"""
Plots gross leverage versus date.
Gross leverage is the sum of long and short exposure per share
divided by net asset value.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
positions : pd.DataFrame
Daily net position values.
- See full explanation in create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
gl = timeseries.gross_lev(positions)
gl.plot(lw=0.5, color='limegreen', legend=False, ax=ax, **kwargs)
ax.axhline(gl.mean(), color='g', linestyle='--', lw=3)
ax.set_title('Gross leverage')
ax.set_ylabel('Gross leverage')
ax.set_xlabel('')
return ax
def plot_exposures(returns, positions, ax=None, **kwargs):
"""
Plots a cake chart of the long and short exposure.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
positions_alloc : pd.DataFrame
Portfolio allocation of positions. See
pos.get_percent_alloc.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
pos_no_cash = positions.drop('cash', axis=1)
l_exp = pos_no_cash[pos_no_cash > 0].sum(axis=1) / positions.sum(axis=1)
s_exp = pos_no_cash[pos_no_cash < 0].sum(axis=1) / positions.sum(axis=1)
net_exp = pos_no_cash.sum(axis=1) / positions.sum(axis=1)
ax.fill_between(l_exp.index,
0,
l_exp.values,
label='Long', color='green', alpha=0.5)
ax.fill_between(s_exp.index,
0,
s_exp.values,
label='Short', color='red', alpha=0.5)
ax.plot(net_exp.index, net_exp.values,
label='Net', color='black', linestyle='dotted')
ax.set_xlim((returns.index[0], returns.index[-1]))
ax.set_title("Exposure")
ax.set_ylabel('Exposure')
ax.legend(loc='lower left', frameon=True, framealpha=0.5)
ax.set_xlabel('')
return ax
def show_and_plot_top_positions(returns, positions_alloc,
show_and_plot=2, hide_positions=False,
legend_loc='real_best', ax=None,
**kwargs):
"""
Prints and/or plots the exposures of the top 10 held positions of
all time.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
positions_alloc : pd.DataFrame
Portfolio allocation of positions. See pos.get_percent_alloc.
show_and_plot : int, optional
By default, this is 2, and both prints and plots.
If this is 0, it will only plot; if 1, it will only print.
hide_positions : bool, optional
If True, will not output any symbol names.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
By default, the legend will display below the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes, conditional
The axes that were plotted on.
"""
positions_alloc = positions_alloc.copy()
positions_alloc.columns = positions_alloc.columns.map(utils.format_asset)
df_top_long, df_top_short, df_top_abs = pos.get_top_long_short_abs(
positions_alloc)
if show_and_plot == 1 or show_and_plot == 2:
utils.print_table(pd.DataFrame(df_top_long * 100, columns=['max']),
float_format='{0:.2f}%'.format,
name='Top 10 long positions of all time')
utils.print_table(pd.DataFrame(df_top_short * 100, columns=['max']),
float_format='{0:.2f}%'.format,
name='Top 10 short positions of all time')
utils.print_table(pd.DataFrame(df_top_abs * 100, columns=['max']),
float_format='{0:.2f}%'.format,
name='Top 10 positions of all time')
if show_and_plot == 0 or show_and_plot == 2:
if ax is None:
ax = plt.gca()
positions_alloc[df_top_abs.index].plot(
title='Portfolio allocation over time, only top 10 holdings',
alpha=0.5, ax=ax, **kwargs)
# Place legend below plot, shrink plot by 20%
if legend_loc == 'real_best':
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
# Put a legend below current axis
ax.legend(loc='upper center', frameon=True, framealpha=0.5,
bbox_to_anchor=(0.5, -0.14), ncol=5)
else:
ax.legend(loc=legend_loc)
ax.set_xlim((returns.index[0], returns.index[-1]))
ax.set_ylabel('Exposure by holding')
if hide_positions:
ax.legend_.remove()
return ax
def plot_max_median_position_concentration(positions, ax=None, **kwargs):
"""
Plots the max and median of long and short position concentrations
over the time.
Parameters
----------
positions : pd.DataFrame
The positions that the strategy takes over time.
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
alloc_summary = pos.get_max_median_position_concentration(positions)
colors = ['mediumblue', 'steelblue', 'tomato', 'firebrick']
alloc_summary.plot(linewidth=1, color=colors, alpha=0.6, ax=ax)
ax.legend(loc='center left', frameon=True, framealpha=0.5)
ax.set_ylabel('Exposure')
ax.set_title('Long/short max and median position concentration')
return ax
def plot_sector_allocations(returns, sector_alloc, ax=None, **kwargs):
"""
Plots the sector exposures of the portfolio over time.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
sector_alloc : pd.DataFrame
Portfolio allocation of positions. See pos.get_sector_alloc.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
sector_alloc.plot(title='Sector allocation over time',
alpha=0.5, ax=ax, **kwargs)
box = ax.get_position()
ax.set_position([box.x0, box.y0 + box.height * 0.1,
box.width, box.height * 0.9])
# Put a legend below current axis
ax.legend(loc='upper center', frameon=True, framealpha=0.5,
bbox_to_anchor=(0.5, -0.14), ncol=5)
ax.set_xlim((sector_alloc.index[0], sector_alloc.index[-1]))
ax.set_ylabel('Exposure by sector')
ax.set_xlabel('')
return ax
def plot_return_quantiles(returns, live_start_date=None, ax=None, **kwargs):
"""
Creates a box plot of daily, weekly, and monthly return
distributions.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
live_start_date : datetime, optional
The point in time when the strategy began live trading, after
its backtest period.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
is_returns = returns if live_start_date is None \
else returns.loc[returns.index < live_start_date]
is_weekly = ep.aggregate_returns(is_returns, 'weekly')
is_monthly = ep.aggregate_returns(is_returns, 'monthly')
sns.boxplot(data=[is_returns, is_weekly, is_monthly],
palette=["#4c72B0", "#55A868", "#CCB974"],
ax=ax, **kwargs)
if live_start_date is not None:
oos_returns = returns.loc[returns.index >= live_start_date]
oos_weekly = ep.aggregate_returns(oos_returns, 'weekly')
oos_monthly = ep.aggregate_returns(oos_returns, 'monthly')
sns.swarmplot(data=[oos_returns, oos_weekly, oos_monthly], ax=ax,
color="red",
marker="d", **kwargs)
red_dots = matplotlib.lines.Line2D([], [], color="red", marker="d",
label="Out-of-sample data",
linestyle='')
ax.legend(handles=[red_dots], frameon=True, framealpha=0.5)
ax.set_xticklabels(['Daily', 'Weekly', 'Monthly'])
ax.set_title('Return quantiles')
return ax
def plot_turnover(returns, transactions, positions,
legend_loc='best', ax=None, **kwargs):
"""
Plots turnover vs. date.
Turnover is the number of shares traded for a period as a fraction
of total shares.
Displays daily total, daily average per month, and all-time daily
average.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
positions : pd.DataFrame
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
legend_loc : matplotlib.loc, optional
The location of the legend on the plot.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
y_axis_formatter = FuncFormatter(utils.two_dec_places)
ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter))
df_turnover = txn.get_turnover(positions, transactions)
df_turnover_by_month = df_turnover.resample("M").mean()
df_turnover.plot(color='steelblue', alpha=1.0, lw=0.5, ax=ax, **kwargs)
df_turnover_by_month.plot(
color='orangered',
alpha=0.5,
lw=2,
ax=ax,
**kwargs)
ax.axhline(
df_turnover.mean(), color='steelblue', linestyle='--', lw=3, alpha=1.0)
ax.legend(['Daily turnover',
'Average daily turnover, by month',
'Average daily turnover, net'],
loc=legend_loc, frameon=True, framealpha=0.5)
ax.set_title('Daily turnover')
ax.set_xlim((returns.index[0], returns.index[-1]))
ax.set_ylim((0, 2))
ax.set_ylabel('Turnover')
ax.set_xlabel('')
return ax
def plot_slippage_sweep(returns, positions, transactions,
slippage_params=(3, 8, 10, 12, 15, 20, 50),
ax=None, **kwargs):
"""
Plots equity curves at different per-dollar slippage assumptions.
Parameters
----------
returns : pd.Series
Timeseries of portfolio returns to be adjusted for various
degrees of slippage.
positions : pd.DataFrame
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
slippage_params: tuple
Slippage pameters to apply to the return time series (in
basis points).
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
slippage_sweep = pd.DataFrame()
for bps in slippage_params:
adj_returns = txn.adjust_returns_for_slippage(returns, positions,
transactions, bps)
label = str(bps) + " bps"
slippage_sweep[label] = ep.cum_returns(adj_returns, 1)
slippage_sweep.plot(alpha=1.0, lw=0.5, ax=ax)
ax.set_title('Cumulative returns given additional per-dollar slippage')
ax.set_ylabel('')
ax.legend(loc='center left', frameon=True, framealpha=0.5)
return ax
def plot_slippage_sensitivity(returns, positions, transactions,
ax=None, **kwargs):
"""
Plots curve relating per-dollar slippage to average annual returns.
Parameters
----------
returns : pd.Series
Timeseries of portfolio returns to be adjusted for various
degrees of slippage.
positions : pd.DataFrame
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
avg_returns_given_slippage = pd.Series()
for bps in range(1, 100):
adj_returns = txn.adjust_returns_for_slippage(returns, positions,
transactions, bps)
avg_returns = ep.annual_return(adj_returns)
avg_returns_given_slippage.loc[bps] = avg_returns
avg_returns_given_slippage.plot(alpha=1.0, lw=2, ax=ax)
ax.set_title('Average annual returns given additional per-dollar slippage')
ax.set_xticks(np.arange(0, 100, 10))
ax.set_ylabel('Average annual return')
ax.set_xlabel('Per-dollar slippage (bps)')
return ax
def plot_capacity_sweep(returns, transactions, market_data,
bt_starting_capital,
min_pv=100000,
max_pv=300000000,
step_size=1000000,
ax=None):
txn_daily_w_bar = capacity.daily_txns_with_bar_data(transactions,
market_data)
captial_base_sweep = pd.Series()
for start_pv in range(min_pv, max_pv, step_size):
adj_ret = capacity.apply_slippage_penalty(returns,
txn_daily_w_bar,
start_pv,
bt_starting_capital)
sharpe = ep.sharpe_ratio(adj_ret)
if sharpe < -1:
break
captial_base_sweep.loc[start_pv] = sharpe
captial_base_sweep.index = captial_base_sweep.index / MM_DISPLAY_UNIT
if ax is None:
ax = plt.gca()
captial_base_sweep.plot(ax=ax)
ax.set_xlabel('Capital base ($mm)')
ax.set_ylabel('Sharpe ratio')
ax.set_title('Capital base performance sweep')
return ax
def plot_daily_turnover_hist(transactions, positions,
ax=None, **kwargs):
"""
Plots a histogram of daily turnover rates.
Parameters
----------
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
positions : pd.DataFrame
Daily net position values.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
turnover = txn.get_turnover(positions, transactions)
sns.distplot(turnover, ax=ax, **kwargs)
ax.set_title('Distribution of daily turnover rates')
ax.set_xlabel('Turnover rate')
return ax
def plot_daily_volume(returns, transactions, ax=None, **kwargs):
"""
Plots trading volume per day vs. date.
Also displays all-time daily average.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
daily_txn = txn.get_txn_vol(transactions)
daily_txn.txn_shares.plot(alpha=1.0, lw=0.5, ax=ax, **kwargs)
ax.axhline(daily_txn.txn_shares.mean(), color='steelblue',
linestyle='--', lw=3, alpha=1.0)
ax.set_title('Daily trading volume')
ax.set_xlim((returns.index[0], returns.index[-1]))
ax.set_ylabel('Amount of shares traded')
ax.set_xlabel('')
return ax
def plot_txn_time_hist(transactions, bin_minutes=5, tz='America/New_York',
ax=None, **kwargs):
"""
Plots a histogram of transaction times, binning the times into
buckets of a given duration.
Parameters
----------
transactions : pd.DataFrame
Prices and amounts of executed trades. One row per trade.
- See full explanation in tears.create_full_tear_sheet.
bin_minutes : float, optional
Sizes of the bins in minutes, defaults to 5 minutes.
tz : str, optional
Time zone to plot against. Note that if the specified
zone does not apply daylight savings, the distribution
may be partially offset.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.gca()
txn_time = transactions.copy()
txn_time.index = txn_time.index.tz_convert(pytz.timezone(tz))
txn_time.index = txn_time.index.map(lambda x: x.hour * 60 + x.minute)
txn_time['trade_value'] = (txn_time.amount * txn_time.price).abs()
txn_time = txn_time.groupby(level=0).sum().reindex(index=range(570, 961))
txn_time.index = (txn_time.index / bin_minutes).astype(int) * bin_minutes
txn_time = txn_time.groupby(level=0).sum()
txn_time['time_str'] = txn_time.index.map(lambda x:
str(datetime.time(int(x / 60),
x % 60))[:-3])
trade_value_sum = txn_time.trade_value.sum()
txn_time.trade_value = txn_time.trade_value.fillna(0) / trade_value_sum
ax.bar(txn_time.index, txn_time.trade_value, width=bin_minutes, **kwargs)
ax.set_xlim(570, 960)
ax.set_xticks(txn_time.index[::int(30 / bin_minutes)])
ax.set_xticklabels(txn_time.time_str[::int(30 / bin_minutes)])
ax.set_title('Transaction time distribution')
ax.set_ylabel('Proportion')
ax.set_xlabel('')
return ax
def show_worst_drawdown_periods(returns, top=5):
"""
Prints information about the worst drawdown periods.
Prints peak dates, valley dates, recovery dates, and net
drawdowns.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
top : int, optional
Amount of top drawdowns periods to plot (default 5).
"""
drawdown_df = timeseries.gen_drawdown_table(returns, top=top)
utils.print_table(
drawdown_df.sort_values('Net drawdown in %', ascending=False),
name='Worst drawdown periods',
float_format='{0:.2f}'.format,
)
def plot_monthly_returns_timeseries(returns, ax=None, **kwargs):
"""
Plots monthly returns as a timeseries.
Parameters
----------
returns : pd.Series
Daily returns of the strategy, noncumulative.
- See full explanation in tears.create_full_tear_sheet.
ax : matplotlib.Axes, optional
Axes upon which to plot.
**kwargs, optional
Passed to seaborn plotting function.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
def cumulate_returns(x):
return ep.cum_returns(x)[-1]
if ax is None:
ax = plt.gca()
monthly_rets = returns.resample('M').apply(lambda x: cumulate_returns(x))
monthly_rets = monthly_rets.to_period()
sns.barplot(x=monthly_rets.index,
y=monthly_rets.values,
color='steelblue')
locs, labels = plt.xticks()
plt.setp(labels, rotation=90)
# only show x-labels on year boundary
xticks_coord = []
xticks_label = []
count = 0
for i in monthly_rets.index:
if i.month == 1:
xticks_label.append(i)
xticks_coord.append(count)
# plot yearly boundary line
ax.axvline(count, color='gray', ls='--', alpha=0.3)
count += 1
ax.axhline(0.0, color='darkgray', ls='-')
ax.set_xticks(xticks_coord)
ax.set_xticklabels(xticks_label)
return ax
def plot_round_trip_lifetimes(round_trips, disp_amount=16, lsize=18, ax=None):
"""
Plots timespans and directions of a sample of round trip trades.
Parameters
----------
round_trips : pd.DataFrame
DataFrame with one row per round trip trade.
- See full explanation in round_trips.extract_round_trips
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
if ax is None:
ax = plt.subplot()
symbols_sample = round_trips.symbol.unique()
np.random.seed(1)
sample = np.random.choice(round_trips.symbol.unique(), replace=False,
size=min(disp_amount, len(symbols_sample)))
sample_round_trips = round_trips[round_trips.symbol.isin(sample)]
symbol_idx = pd.Series(np.arange(len(sample)), index=sample)
for symbol, sym_round_trips in sample_round_trips.groupby('symbol'):
for _, row in sym_round_trips.iterrows():
c = 'b' if row.long else 'r'
y_ix = symbol_idx[symbol] + 0.05
ax.plot([row['open_dt'], row['close_dt']],
[y_ix, y_ix], color=c,
linewidth=lsize, solid_capstyle='butt')
ax.set_yticks(range(disp_amount))
ax.set_yticklabels([utils.format_asset(s) for s in sample])
ax.set_ylim((-0.5, min(len(sample), disp_amount) - 0.5))
blue = patches.Rectangle([0, 0], 1, 1, color='b', label='Long')
red = patches.Rectangle([0, 0], 1, 1, color='r', label='Short')
leg = ax.legend(handles=[blue, red], loc='lower left',
frameon=True, framealpha=0.5)
leg.get_frame().set_edgecolor('black')
ax.grid(False)
return ax
def show_profit_attribution(round_trips):
"""
Prints the share of total PnL contributed by each
traded name.
Parameters
----------
round_trips : pd.DataFrame
DataFrame with one row per round trip trade.
- See full explanation in round_trips.extract_round_trips
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
total_pnl = round_trips['pnl'].sum()
pnl_attribution = round_trips.groupby('symbol')['pnl'].sum() / total_pnl
pnl_attribution.name = ''
pnl_attribution.index = pnl_attribution.index.map(utils.format_asset)
utils.print_table(
pnl_attribution.sort_values(
inplace=False,
ascending=False,
),
name='Profitability (PnL / PnL total) per name',
float_format='{:.2%}'.format,
)
def plot_prob_profit_trade(round_trips, ax=None):
"""
Plots a probability distribution for the event of making
a profitable trade.
Parameters
----------
round_trips : pd.DataFrame
DataFrame with one row per round trip trade.
- See full explanation in round_trips.extract_round_trips
ax : matplotlib.Axes, optional
Axes upon which to plot.
Returns
-------
ax : matplotlib.Axes
The axes that were plotted on.
"""
x = np.linspace(0, 1., 500)
round_trips['profitable'] = round_trips.pnl > 0
dist = sp.stats.beta(round_trips.profitable.sum(),
(~round_trips.profitable).sum())
y = dist.pdf(x)
lower_perc = dist.ppf(.025)
upper_perc = dist.ppf(.975)
lower_plot = dist.ppf(.001)
upper_plot = dist.ppf(.999)
if ax is None:
ax = plt.subplot()
ax.plot(x, y)
ax.axvline(lower_perc, color='0.5')
ax.axvline(upper_perc, color='0.5')
ax.set_xlabel('Probability of making a profitable decision')
ax.set_ylabel('Belief')
ax.set_xlim(lower_plot, upper_plot)
ax.set_ylim((0, y.max() + 1.))
return ax
def plot_cones(name, bounds, oos_returns, num_samples=1000, ax=None,
cone_std=(1., 1.5, 2.), random_seed=None, num_strikes=3):
"""
Plots the upper and lower bounds of an n standard deviation
cone of forecasted cumulative returns. Redraws a new cone when
cumulative returns fall outside of last cone drawn.
Parameters
----------
name : str
Account name to be used as figure title.
bounds : pandas.core.frame.DataFrame
Contains upper and lower cone boundaries. Column names are
strings corresponding to the number of standard devations
above (positive) or below (negative) the projected mean
cumulative returns.
oos_returns : pandas.core.frame.DataFrame
Non-cumulative out-of-sample returns.
num_samples : int
Number of samples to draw from the in-sample daily returns.
Each sample will be an array with length num_days.
A higher number of samples will generate a more accurate
bootstrap cone.
ax : matplotlib.Axes, optional
Axes upon which to plot.
cone_std : list of int/float
Number of standard devations to use in the boundaries of
the cone. If multiple values are passed, cone bounds will
be generated for each value.
random_seed : int
Seed for the pseudorandom number generator used by the pandas
sample method.
num_strikes : int
Upper limit for number of cones drawn. Can be anything from 0 to 3.
Returns
-------
Returns are either an ax or fig option, but not both. If a
matplotlib.Axes instance is passed in as ax, then it will be modified
and returned. This allows for users to plot interactively in jupyter
notebook. When no ax object is passed in, a matplotlib.figure instance
is generated and returned. This figure can then be used to save
the plot as an image without viewing it.
ax : matplotlib.Axes
The axes that were plotted on.
fig : matplotlib.figure
The figure instance which contains all the plot elements.
"""
if ax is None:
fig = figure.Figure(figsize=(10, 8))
FigureCanvasAgg(fig)
axes = fig.add_subplot(111)
else:
axes = ax
returns = ep.cum_returns(oos_returns, starting_value=1.)
bounds_tmp = bounds.copy()
returns_tmp = returns.copy()
cone_start = returns.index[0]
colors = ["green", "orange", "orangered", "darkred"]
for c in range(num_strikes + 1):
if c > 0:
tmp = returns.loc[cone_start:]
bounds_tmp = bounds_tmp.iloc[0:len(tmp)]
bounds_tmp = bounds_tmp.set_index(tmp.index)
crossing = (tmp < bounds_tmp[float(-2.)].iloc[:len(tmp)])
if crossing.sum() <= 0:
break
cone_start = crossing.loc[crossing].index[0]
returns_tmp = returns.loc[cone_start:]
bounds_tmp = (bounds - (1 - returns.loc[cone_start]))
for std in cone_std:
x = returns_tmp.index
y1 = bounds_tmp[float(std)].iloc[:len(returns_tmp)]
y2 = bounds_tmp[float(-std)].iloc[:len(returns_tmp)]
axes.fill_between(x, y1, y2, color=colors[c], alpha=0.5)
# Plot returns line graph
label = 'Cumulative returns = {:.2f}%'.format((returns.iloc[-1] - 1) * 100)
axes.plot(returns.index, returns.values, color='black', lw=3.,
label=label)
if name is not None:
axes.set_title(name)
axes.axhline(1, color='black', alpha=0.2)
axes.legend(frameon=True, framealpha=0.5)
if ax is None:
return fig
else:
return axes
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。