代码拉取完成,页面将自动刷新
同步操作将从 yanlang0123/ComfyUI_Lam 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import math
import torch
import comfy.utils
import numpy as np
import cv2
from .lama import LamaInpainting
def pad64(x):
return int(np.ceil(float(x) / 64.0) * 64 - x)
def safer_memory(x):
# Fix many MAC/AMD problems
return np.ascontiguousarray(x.copy()).copy()
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image_with_pad(input_image, resolution, skip_hwc3=False):
if skip_hwc3:
img = input_image
else:
img = HWC3(input_image)
H_raw, W_raw, _ = img.shape
k = float(resolution) / float(min(H_raw, W_raw))
interpolation = cv2.INTER_CUBIC if k > 1 else cv2.INTER_AREA
H_target = int(np.round(float(H_raw) * k))
W_target = int(np.round(float(W_raw) * k))
img = cv2.resize(img, (W_target, H_target), interpolation=interpolation)
H_pad, W_pad = pad64(H_target), pad64(W_target)
img_padded = np.pad(img, [[0, H_pad], [0, W_pad], [0, 0]], mode='edge')
def remove_pad(x):
return safer_memory(x[:H_target, :W_target])
return safer_memory(img_padded), remove_pad
class ImageLama:
def __init__(self,res=512):
self.res=res
@classmethod
def INPUT_TYPES(s):
return {"required":
{"images": ("IMAGE", ),
"mask": ("MASK",),
},
}
CATEGORY = "lam"
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("图片",)
FUNCTION = "lama_inpaint"
def lama_inpaint(self, images,mask):
mask_np=mask.numpy()
mask_shape=mask_np.shape
imaget_np=images.numpy()
imgt_shape=imaget_np.shape
prd_images=[]
for i in range(imgt_shape[0]):
imaget=np.uint8(imaget_np[i]*255)
imaget = cv2.cvtColor(imaget, cv2.COLOR_BGR2RGB)
mask=np.uint8(mask_np*255)
mask=np.expand_dims(mask, axis=-1)
H, W, C = imaget.shape
img=np.zeros((H,W,4))
img[:,:,0:3]=imaget
img[:,:,3:4]=mask
raw_color = img[:, :, 0:3].copy()
raw_mask = img[:, :, 3:4].copy()
res = 256 # Always use 256 since lama is trained on 256
img_res, remove_pad = resize_image_with_pad(img, res, skip_hwc3=True)
model_lama = LamaInpainting()
# applied auto inversion
prd_color = model_lama(img_res)
prd_color = remove_pad(prd_color)
prd_color = cv2.resize(prd_color, (W, H))
alpha = raw_mask.astype(np.float32) / 255.0
fin_color = prd_color.astype(np.float32) * alpha + raw_color.astype(np.float32) * (1 - alpha)
fin_color = fin_color.clip(0, 255).astype(np.uint8)
fin_color = cv2.cvtColor(fin_color, cv2.COLOR_BGR2RGB)
prd_images.append(torch.from_numpy(np.array(fin_color).astype(np.float32) / 255.0))
return (torch.stack(prd_images),)
NODE_CLASS_MAPPINGS = {
"ImageLama": ImageLama
}
NODE_DISPLAY_NAME_MAPPINGS = {
"ImageLama": "图片局部重绘lama"
}
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。