代码拉取完成,页面将自动刷新
###### # application IV eminent domain
###### Simulations from Chern. Hansen. Spindler.
### 0. Settings
### Load packages
library("ggplot2")
library("gridExtra")
library("MASS")
library("mnormt")
library(hdm)
library(AER)
library(car)
update.packages("Rcpp")
### Simulation parameters
set.seed(13571113)
p_x = 200 ## number of controls
p_z = 150 ## number of instruments
n = 202 ## total sample size
K = 2 # nb folds
#### Splitting decision rules
split = runif(n)
cvgroup = as.numeric(cut(split,quantile(split,probs = seq(0, 1, 1/K)),include.lowest = T))
##number of MC replications
MC =2000
Results = matrix(ncol=3, nrow=MC)
out = NULL
out1 = NULL
out2 = NULL
out3=NULL
outKK1 = NULL
outKK2 = NULL
for (kk in 1:MC){
### GENERATE DATA
means <- c(0,0,0,0)
Sigma <- matrix(0,p_x,p_x)
for (i in 1:p_x){
for (j in 1:p_x){
Sigma[i,j] <- (1/2)^{abs(i-j)}
}
}
nu <- 4/9 + sum((1:p_x)^(-2))
beta <- matrix(0,1,p_x)
beta[1,1:4] <- 1/(9*nu)
beta[1,5:p_x] <- 1/nu*(5:p_x)^(-2)
delta <- matrix(3*(1:p_z)^(-2),p_z,1)
Pi_m <- cbind(diag(1,p_z,p_z),matrix(0,p_z,(p_x-p_z)))
sigmas <- matrix(0,2+p_z+p_x, 2+p_z+p_x)
sigmas[1:2,1:2] <- matrix(c(1,0.6,0.6,1), 2,2 )
sigmas[3:(2+p_z),3:(2+p_z)] <- diag(1,p_z,p_z)
sigmas[(3+p_z):(2+p_z+p_x),(3+p_z):(2+p_z+p_x)] <-Sigma
var <- rmnorm(n, mean = rep(0, nrow(sigmas)), varcov = sigmas)
dim(var )
eps <- var[,1]
us <- var[,2]
zetas <- var[,3:(2+p_z)]
x <- var[,(3+p_z):(2+p_z+p_x)]
gamma = beta
tau = 1.5
z <- Pi_m%*%t(x) + 0.125*t(zetas)
d <- x%*%t(gamma) + t(z)%*%delta + us
y <- tau *d + x%*%t(beta) + 2*eps
z <- t(z)
### METHOD 0bis: oracle
zO =z%*%delta
xO =x%*%t(beta)
ivfit.lasso = tsls(y=y,d=d, x=xO, z=zO)
out3 <- rbind(out3,c(ivfit.lasso$coef[1], ivfit.lasso$se[1],ivfit.lasso$coef[1]/ivfit.lasso$se[1]))
### METHOD 1: Double-Selection, no sample-splitting
## Do LASSO of D on X to obtain gamma
W= cbind(z,x)
rD_xz = rlasso(d ~ W)
ind.dzx <- rD_xz$index
## Do LASSO of Y on X to obtain theta, and extract residuals
rY_x = rlasso(y ~ x)
rY = rY_x$residuals
# rD_x = rlasso(d ~ x)
# rD = rD_x$res
## Build D_hat from estimated gamma and delta
### compute the projection of d on vect(W[selected covariates using lasso])
PZ <- W[, ind.dzx] %*% MASS::ginv(t( W[, ind.dzx]) %*% W[, ind.dzx]) %*% t(W[, ind.dzx]) %*% d
## do LASSO of this predicted d using these covariates on x (d_hat on X) to get nu
rPZ.x <- rlasso(x, PZ)
ind.PZx <- rPZ.x$index
## extract the residuals of the lasso of d_hat on X
if (sum(ind.PZx) == 0) {
Dr <- d - mean(d)
} else {
# Dr <- d - predict(rPZ.x)
Dr <- d - x[,ind.PZx]%*%MASS::ginv(t(x[,ind.PZx])%*%x[,ind.PZx])%*%t(x[,ind.PZx])%*%PZ
}
## extract the residuals of the lasso of Y on X
if (sum(rY_x$index) == 0) {
Yr <- y - mean(y)
} else {
Yr <- rY
}
## extract the residuals of the lasso of the projection of Y on X
if (sum(rPZ.x$index) == 0) {
Zr <- PZ - mean(x)
} else {
Zr <- rPZ.x$residuals
}
## Do TSLS of the residuals of Y/X on residuals of D/X using residuals of Dhat/X as instruments
ivfit.lasso <- tsls(y = Yr, d = Dr, x = NULL, z = Zr, intercept = FALSE)
# coef <- as.vector( ivfit.lasso$coefficient)
# ivfit.lasso = tsls(y=rY,d=rD1, x=NULL, z=rD_res, intercept = FALSE)
out <- rbind(out,c(ivfit.lasso$coef[1], ivfit.lasso$se[1],ivfit.lasso$coef[1]/ivfit.lasso$se[1]))
### Build in function to do all this....
# ivfit.lasso2 = rlassoIV(y ~ x + d | x + z, select.X=TRUE, select.Z=TRUE)
# out1 <- rbind(out1,c(ivfit.lasso2$coef, ivfit.lasso2$se,ivfit.lasso2$coef/ivfit.lasso2$se )
### METHOD 0: selection, alternative (Non-orthogonal)
## select all the controls selected by the two Lasso
sel = (abs(rD_xz$coefficients[(2+dim(z)[2]):(1+dim(x)[2]+dim(z)[2])])> 10^(-6))*1 + (rY_x$coefficients[2:(dim(x)[2]+1)]> 10^(-6))*1
sel[sel ==2] <- 1
sel_z = (rD_xz$coefficients[2:(dim(z)[2])] > 10^(-6))*1
## Do TSLS
x_sel = x[,sel==1]
z_sel = z[,sel_z==1]
if(sum(sel)>0 & sum(sel_z)>0){
ivfit.lm = ivreg(y ~ d + x_sel| z_sel + x_sel)
}else if (sum(sel)==0 & sum(sel_z)>0){
ivfit.lm = ivreg(y ~ d | z_sel)
}
se <- coef(summary(ivfit.lm))[2, "Std. Error"]
out1 <- rbind(out1,c(ivfit.lm$coef["d"], se ,ivfit.lm$coef["d"]/se))
### METHOD 2: Double Selection with Sample Splitting
outK = matrix(ncol=3, nrow=K)
k=1
for(k in 1:K){
Ik = cvgroup==k # Separate the sample
NIk = cvgroup!=k
ind <- matrix(1,dim(d)[1],1)
ind_x <- matrix(1,dim(x[Ik,])[1],1)
## Do LASSO of D on X to obtain gamma
W= cbind(z,x)
rD_xz = rlasso(d[NIk,] ~ W[NIk,] )
ind.dzx <- rD_xz$index
## Do LASSO of Y on X to obtain theta, and extract residuals
rY_x = rlasso(y[NIk,] ~ x[NIk,])
ind.Y_x <- rY_x$index
## Build D_hat from estimated gamma and delta
PZ <- W[, ind.dzx] %*% MASS::ginv(t( W[, ind.dzx]) %*% W[, ind.dzx]) %*% t(W[, ind.dzx]) %*% d
## regress d_hat on X to get nu
rPZ.x <- rlasso(x[NIk,], PZ[NIk,])
ind.PZx <- rPZ.x$index
## extract the residuals of the lasso of d_hat on X
if (sum(ind.PZx) == 0) {
Dr <- d[Ik,] - mean(d[Ik,])
} else {
# Dr <- d[Ik,] - predict(rPZ.x, newdata=x[Ik,])
Dr <- d[Ik,] - x[Ik, ind.PZx] %*% (MASS::ginv(t( x[NIk, ind.PZx]) %*% x[NIk, ind.PZx]) %*% t(x[NIk, ind.PZx]) %*% d[NIk,])
}
## extract the residuals of the lasso of Y on X
if (sum(rY_x$index) == 0) {
Yr <- y[Ik,] - mean(y[Ik,])
} else {
# Yr <- y[Ik,] - predict(rY_x, newdata=x[Ik,])
Yr <- y[Ik,] - x[Ik, ind.Y_x] %*% (MASS::ginv(t( x[NIk, ind.Y_x]) %*% x[NIk, ind.Y_x]) %*% t(x[NIk, ind.Y_x]) %*% y[NIk,])
}
## extract the residuals of the lasso of the projection of Y on W on X
if (sum(rPZ.x$index) == 0) {
Zr <- PZ[Ik,] - mean(x[Ik,])
} else {
# Zr <- PZ[Ik,] -predict(rPZ.x, newdata=x[Ik,])
Zr <- PZ[Ik,] - x[Ik, ind.PZx] %*% (MASS::ginv(t( x[NIk, ind.PZx]) %*% x[NIk, ind.PZx]) %*% t(x[NIk, ind.PZx]) %*% PZ[NIk,])
}
## Do TSLS
ivfit.lasso<- tsls(y = Yr, d = Dr, x = NULL, z = Zr, intercept = FALSE)
outK[k,] <- c(ivfit.lasso$coef[1], ivfit.lasso$se[1],ivfit.lasso$coef[1]/ivfit.lasso$se[1])
}
outK1 <- outK
coef1 <- median( outK1[,1])
outK1[,2] <- outK1[,2] +( outK1[,1] - coef1 )^2
outKK1 <- rbind(outKK1,c(coef1, median( outK1[,2]),coef1/median( outK1[,2])))
outK1 <- outK
coef1 <- mean( outK1[,1])
outK1[,2] <- outK1[,2] +( outK1[,1] - coef1 )^2
outKK2 <- rbind(outKK2,c(coef1, mean( outK1[,2]),coef1/mean( outK1[,2])))
cat(paste0("iteration", kk , "\n"))
}
hist(out[,3]-tau/out[,2],100, prob=T, col=4)
xseq = seq(-3,3,length.out=100)
lines(xseq,dnorm(xseq),col=2, lwd=2)
hist(out1[,3]-tau/out1[,2],100, prob=T, col=4)
xseq = seq(-3,3,length.out=100)
lines(xseq,dnorm(xseq),col=2, lwd=2)
hist(out3[,3]-tau/out3[,2],100, prob=T, col=4)
xseq = seq(-3,3,length.out=100)
lines(xseq,dnorm(xseq),col=2, lwd=2)
# hist(out[,3],100, prob=T, col=4)
# xseq = seq(-3,3,length.out=100)
# lines(xseq,dnorm(xseq),col=2, lwd=2)
#
# hist(out1[,3],100, prob=T, col=4)
# xseq = seq(-3,3,length.out=100)
# lines(xseq,dnorm(xseq),col=2, lwd=2)
#
# hist(out3[,3],100, prob=T, col=4)
# xseq = seq(-3,3,length.out=100)
# lines(xseq,dnorm(xseq),col=2, lwd=2)
#
#
# hist(outKK1[,3],100, prob=T, col=4)
# xseq = seq(-3,3,length.out=100)
# lines(xseq,dnorm(xseq),col=2, lwd=2)
#
# hist(outKK2[,3],100, prob=T, col=4)
# xseq = seq(-3,3,length.out=100)
# lines(xseq,dnorm(xseq),col=2, lwd=2)
Results = matrix(ncol=5, nrow=dim(outKK2)[1])
Results[,2] = out[1:dim(outKK2)[1],1]
Results[,1] = out1[1:dim(outKK2)[1],1]
Results[,3] = out3[1:dim(outKK2)[1],1]
Results[,4] = outKK1[1:dim(outKK2)[1],1]
Results[,5] = outKK2[1:dim(outKK2)[1],1]
### COMPUTE BIAS AND RMSE
StatDisplay = data.frame()
StatDisplay[1:5,"bias"] = apply(Results-tau,2,mean)
StatDisplay[1:5,"RMSE"] = sqrt(apply((Results-tau)^2,2,mean))
StatDisplay[1:5,"MAD"] = sqrt(apply((Results-tau)^2,2,median))
row.names(StatDisplay) = c("Naive","Immunized","Oracle", "Cross-fitted med.","Cross-fitted mean.")
print(StatDisplay)
library(xtable)
xtable(StatDisplay)
Results[,1] = out1[1:dim(outKK2)[1],3] - tau/out1[1:dim(outKK2)[1],2]
Results[,2] = out[1:dim(outKK2)[1],3]- tau/out[1:dim(outKK2)[1],2]
Results[,3] = out3[1:dim(outKK2)[1],3]- tau/out3[1:dim(outKK2)[1],2]
Results[,4] = outKK1[1:dim(outKK2)[1],3]- tau/outKK1[1:dim(outKK2)[1],2]
Results[,5] = outKK2[1:dim(outKK2)[1],3]- tau/outKK2[1:dim(outKK2)[1],2]
Results_s <- Results
### DRAW CHARTS
id = c(mapply(function(x) rep(x,dim(outKK2)[1]),1:5))
val = c(Results)
data_res = data.frame(val = val, model = id)
length(id)
M = max(abs(quantile(Results,.05,na.rm=T)),abs(quantile(Results,.95,na.rm=T)))
lb = -4; ub = 4
get.plot <- function(data,modelS,title="A Title",s){
plot_res <- ggplot(subset(data, (model==modelS)), aes(x=val)) +
geom_histogram(binwidth = .02, alpha=.5, position='identity',fill="steelblue", aes(y = ..density..)) +
scale_x_continuous(limits=c(lb,ub), name="Treatment effect") +
ggtitle(title) +
stat_function(fun = dnorm, args=list(mean=0, sd=s), colour="darkorchid3", size=1) +
theme(plot.title = element_text(lineheight=.8, face="bold"),legend.position="none")
return(plot_res)
} # plot func
# pdf("plots/Immunized.pdf",width=14,height=4)
stdev=1
grid.arrange(get.plot(data_res,1,"Naive", 1), get.plot(data_res,2,"Immunized",1), get.plot(data_res,3,"Oracle",1), ncol=3)
grid.arrange(get.plot(data_res,4,"Cross-fitted med.",1),get.plot(data_res,5,"Cross-fitted mean", 1), ncol=2)
###### #####
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。