1 Star 0 Fork 256

阿拉木/股票分析

forked from wking/股票分析 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
plot.py 11.87 KB
一键复制 编辑 原始数据 按行查看 历史
wking 提交于 2021-04-15 11:09 . plot.py增加绘制趋势线功能
"""
画K线文件,反应策略买入卖出节点。
"""
import os
import sys
import time
import threading
from multiprocessing import Pool, RLock, freeze_support
import numpy as np
import pandas as pd
from tqdm import tqdm
from rich import print as print
import CeLue # 个人策略文件,不分享
import func_TDX
import user_config as ucfg
from pyecharts.charts import Kline, Bar, Grid
from pyecharts.globals import ThemeType
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
def markareadata(df_stock):
# 生成买点卖点区域标示坐标点
df_celue = df_stock.loc[df_stock['celue_buy'] | df_stock['celue_sell']] # 提取买卖点列
yAxis_max = df_stock['high'].max()
markareadata = []
temp = []
# k是range索引,对应图形第几个点,v是K行的内容,字典类型
for k, v in df_celue.iterrows():
temp.append(
{
"xAxis": k,
# "yAxis": yAxis_max if v['celue_sell'] else 0, # buy点是0,sell点是最大值 填了y坐标会导致图形放大后区域消失
}
)
# 如果temp列表数量到达2,表示起点xy坐标、终点xy坐标生成完毕。添加到markareadata,清空temp重新开始
if len(temp) == 2:
# 给第2组xy坐标字典添加'itemStyle': {'color': '#14b143'}键值对。
# df_celue.at[temp[1]['xAxis'], 'close']为读取对应索引的收盘价。
# 第二组坐标收盘价和第一组坐标收盘价比较,大于则区域颜色是红色表示盈利,小于则绿色亏损
temp[1]["itemStyle"] = {'color': "#ef232a" if df_celue.at[temp[1]['xAxis'], 'close'] > df_celue.at[
temp[0]['xAxis'], 'close'] else "#14b143"}
markareadata.append(temp)
# rprint(markareadata)
temp = []
return markareadata
def marklinedata(df_stock):
# 生成趋势线数据
import math
from func_TDX import SMA, BARSLASTCOUNT
"""
与下面的通达信公式效果完全一致:
现价:CONST(C),COLORLIGRAY,DOTLINE;
MAA10:=MA(CLOSE,55);
高突:=BARSLASTCOUNT(L>MAA10)=9;
低突:=BARSLASTCOUNT(H<MAA10)=9;
高突破:=高突 ;
低突破:=低突 ;
距上次高位置:=BARSLAST(高突破),NODRAW;
距上次低位置:=BARSLAST(低突破),NODRAW;
高过滤:=(高突破 AND REF(距上次高位置,1)>REF(距上次低位置,1));
低过滤:=(低突破 AND REF(距上次低位置,1)>REF(距上次高位置,1));
高0:=BACKSET(高过滤,10);
低0:=BACKSET(低过滤,10);
高1:=CROSS(高0,0.5);
低1:=CROSS(低0,0.5);
距上高位:=BARSLAST(高1),NODRAW;
距上低位:=BARSLAST(低1),NODRAW;
低点:=IF(距上高位 > 距上低位, LLV(L,距上低位+1)=L,0);
低:=FILTERX(低点 AND 距上高位>距上低位,距上低位+1);
高点:=IF(距上高位 < 距上低位, HHV(H,距上高位+1)=H,0);
高:=FILTERX(高点 AND 距上低位>距上高位 ,距上高位+1);
NOTEXT上涨线:DRAWLINE(低 AND BARSLAST(高)>20,L,高 AND BARSLAST(低)>20,H,0),COLORRED,LINETHICK2;
NOTEXT下跌线:DRAWLINE(高 AND BARSLAST(低)>20,H,低 AND BARSLAST(高)>20,L,0),COLORGREEN,LINETHICK2;
"""
df_stock['date'] = pd.to_datetime(df_stock['date'], format='%Y-%m-%d') # 转为时间格式
df_stock.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
H = df_stock['high']
L = df_stock['low']
C = df_stock['close']
TJ04_均线 = SMA(C, 55)
TJ04_高突破 = BARSLASTCOUNT(L > TJ04_均线) == 9
TJ04_低突破 = BARSLASTCOUNT(H < TJ04_均线) == 9
TJ04_高突破 = pd.DataFrame(TJ04_高突破.loc[TJ04_高突破 == True], columns=["高突破"])
TJ04_低突破 = pd.DataFrame(TJ04_低突破.loc[TJ04_低突破 == True], columns=["低突破"])
TJ04_过滤 = pd.concat([TJ04_高突破, TJ04_低突破]).fillna(value=False).sort_index()
del TJ04_均线, TJ04_高突破, TJ04_低突破
, = 0, 0
# 过滤高低突破信号循环逻辑:日期由远及近,高低突破信号依次取值,保留各自最相近的一个
for index, row in TJ04_过滤[:].iterrows():
if row['高突破'] and == 1:
TJ04_过滤.drop(index=index, inplace=True)
elif row['低突破'] and == 1:
TJ04_过滤.drop(index=index, inplace=True)
elif row['高突破'] and == 0:
= 1
= 0
elif row['低突破'] and == 0:
= 0
= 1
# 寻找阶段高低点
TJ04_过滤.reset_index(drop=False, inplace=True)
TJ04_高低点 = pd.DataFrame()
last_day = None
for index, row in TJ04_过滤.iterrows():
if index == 0:
last_day = row['date']
continue
elif row['高突破']:
s_date = last_day # 日期区间起点
e_date = row['date'] # 日期区间终点
low_date = L.loc[s_date:e_date].idxmin() # 低点日
low_value = L.loc[s_date:e_date].min() # 低点数值
last_day = low_date
df_temp = pd.Series(data={'低点价格': low_value,
'低点日期': low_date,
},
name=index,
)
elif row['低突破']:
s_date = last_day # 日期区间起点
e_date = row['date'] # 日期区间终点
high_date = H.loc[s_date:e_date].idxmax() # 高点日
high_value = H.loc[s_date:e_date].max() # 高点数值
last_day = high_date
df_temp = pd.Series(data={'高点价格': high_value,
'高点日期': high_date,
},
name=index,
)
TJ04_高低点 = TJ04_高低点.append(df_temp)
TJ04_高低点.reset_index(drop=True, inplace=True)
# 转换为pyecharts所需数据格式
marklinedata = []
temp = []
"""
x坐标是日期对应的整数序号,y坐标是价格
所需数据格式: [[{'xAxis': 起点x坐标, 'yAxis': 起点y坐标, 'value': 线长}, {'xAxis': 终点x坐标, 'yAxis': 终点y坐标}],
[{'xAxis': 起点x坐标, 'yAxis': 起点y坐标, 'value': 线长}, {'xAxis': 终点x坐标, 'yAxis': 终点y坐标}],
]
"""
last_day, last_value = 0, 0
for index, row in TJ04_高低点.iterrows():
if index == 0:
if pd.isna(row['低点价格']): # True=高点是有效数值 False=低点是有效数值
last_day = row['高点日期']
last_value = row['高点价格']
else:
last_day = row['低点日期']
last_value = row['低点价格']
continue
elif pd.isna(row['低点价格']): # True=高点是有效数值 False=低点是有效数值
# 上涨起点坐标
temp.append(
{
"xAxis": df_stock.index.get_loc(last_day),
"yAxis": last_value,
},
)
# 上涨终点坐标
temp.append(
{
"xAxis": df_stock.index.get_loc(row['高点日期']),
"yAxis": row['高点价格'],
"lineStyle": {'color': "#ef232a"},
},
)
last_day = row['高点日期']
last_value = row['高点价格']
else:
# 下跌起点坐标
temp.append(
{
"xAxis": df_stock.index.get_loc(last_day),
"yAxis": last_value,
},
)
# 下跌终点坐标
temp.append(
{
"xAxis": df_stock.index.get_loc(row['低点日期']),
"yAxis": row['低点价格'],
"lineStyle": {'color': "#14b143"},
},
)
last_day = row['低点日期']
last_value = row['低点价格']
marklinedata.append(temp)
temp = []
# print(marklinedata)
return marklinedata
if __name__ == '__main__':
stock_code = "300496"
try:
if len(sys.argv[1:][0]) == 6:
stock_code = sys.argv[1:][0]
else:
raise ValueError("参数非股票代码,需正确输入参数 格式: python celue.py 000001")
except IndexError as error:
print("没有获取到参数,需手动附加参数 格式: python celue.py 000001")
print(f"使用代码内置的股票代码 {stock_code}")
df_stock = pd.read_pickle(ucfg.tdx["pickle"] + os.sep + stock_code + ".pkl")
# df_stock['date'] = pd.to_datetime(df_stock['date'], format='%Y-%m-%d') # 转为时间格式
# df_stock.set_index('date', drop=False, inplace=True) # 时间为索引。方便与另外复权的DF表对齐合并
# print(df_stock)
kline = Kline(init_opts=opts.InitOpts(width="100%", height="600px", theme=ThemeType.ESSOS, page_title=stock_code, ))
# bar = Bar()
# 做横轴的处理
datetime = df_stock['date'].astype(str).tolist()
oclh = []
# df_stock[['open', 'close', 'low', 'high']].apply(lambda row:oclh.append(row.to_list()))
for i in range(df_stock.shape[0]):
oclh.append(df_stock.loc[i, ['open', 'close', 'low', 'high']].to_list())
vol = df_stock['vol'].tolist()
# print(oclh)
kline.add_xaxis(datetime)
kline.add_yaxis(stock_code, oclh, itemstyle_opts=opts.ItemStyleOpts(
color="#ef232a",
color0="#14b143",
border_color="#ef232a",
border_color0="#14b143", ),
# markpoint_opts=opts.MarkPointOpts(
# data=[
# opts.MarkPointItem(type_="max", name="最大值"),
# opts.MarkPointItem(type_="min", name="最小值"),
# ]
# ),
markline_opts=opts.MarkLineOpts(
label_opts=opts.LabelOpts(
position="middle", color="blue", font_size=15
),
data=marklinedata(df_stock.copy()),
symbol=["none", "none"],
linestyle_opts=opts.LineStyleOpts(
width=2,
type_="solid",
),
),
)
kline.set_series_opts(
markarea_opts=opts.MarkAreaOpts(is_silent=True, data=markareadata(df_stock),
itemstyle_opts=opts.ItemStyleOpts(opacity=0.5,
)
)
)
kline.set_global_opts(
xaxis_opts=opts.AxisOpts(is_scale=True),
yaxis_opts=opts.AxisOpts(
is_scale=True,
splitline_opts=opts.SplitLineOpts(is_show=True),
),
tooltip_opts=opts.TooltipOpts(trigger="axis", axis_pointer_type="line"),
datazoom_opts=[
opts.DataZoomOpts(type_="inside", range_start=-100),
opts.DataZoomOpts(pos_bottom="0%"),
],
# title_opts=opts.TitleOpts(title=stock_code),
)
grid_chart = Grid(init_opts=opts.InitOpts(width="100%", height="950px",
theme=ThemeType.ESSOS,
page_title=stock_code, ))
grid_chart.add_js_funcs("var areaData={}".format(markareadata(df_stock)))
grid_chart.add_js_funcs("console.log('hello world')")
grid_chart.add(
kline,
grid_opts=opts.GridOpts(
pos_left="3%", pos_right="1%", height="85%"
),
)
grid_chart.render('plot.html')
print(f'{stock_code} 绘图完成,打开plot.html文件查看结果,程序结束')
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/almu/stock-analysis.git
git@gitee.com:almu/stock-analysis.git
almu
stock-analysis
股票分析
master

搜索帮助