代码拉取完成,页面将自动刷新
同步操作将从 paipan/paipan 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
/****************************************
以下是天文计算部分,包含有:
物件 SZJ : 用来计算日月的升起、中天、降落
注意,上述函数或物件是纯天文学的,根据实际需要组合使用可以得到所需要的各种日月坐标,计算精度及计算速度也是可以根据需要有效控制的。
*****************************************/
//=========日月升降物件=============
var SZJ={//日月的升中天降,不考虑气温和气压的影响
L : 0, //站点地理经度,向东测量为正
fa : 0, //站点地理纬度
dt : 0, //TD-UT
E : 0.409092614, //黄赤交角
getH:function(h,w){ //h地平纬度,w赤纬,返回时角
var c = ( Math.sin(h) - Math.sin(this.fa)*Math.sin(w) ) / Math.cos(this.fa)/Math.cos(w);
if(Math.abs(c)>1) return Math.PI;
return Math.acos(c);
},
Mcoord:function(jd,H0,r){ //章动同时影响恒星时和天体坐标,所以不计算章动。返回时角及赤经纬
var z = m_coord( (jd+this.dt)/36525, 40,30,8 ); //低精度月亮赤经纬
z = llrConv( z, this.E ); //转为赤道坐标
r.H = rad2rrad( pGST(jd,this.dt) + this.L - z[0] ); //得到此刻天体时角
if(H0) r.H0 = this.getH( 0.7275*cs_rEar/z[2]-34*60/rad, z[1] ); //升起对应的时角
},
Mt : function(jd){ //月亮到中升降时刻计算,传入jd含义与St()函数相同
this.dt = dt_T(jd);
this.E = hcjj(jd/36525);
jd -= mod2(0.1726222 + 0.966136808032357*jd - 0.0366*this.dt + this.L/pi2, 1); //查找最靠近当日中午的月上中天,mod2的第1参数为本地时角近似值
var r = new Array(), sv = pi2*0.966;
r.z = r.x = r.s = r.j = r.c = r.h = jd;
this.Mcoord(jd,1,r); //月亮坐标
r.s += (-r.H0 - r.H )/sv;
r.j += ( r.H0 - r.H )/sv;
r.z += ( 0 - r.H )/sv;
r.x += ( Math.PI - r.H )/sv;
this.Mcoord(r.s,1,r); r.s += rad2rrad( -r.H0 - r.H )/sv;
this.Mcoord(r.j,1,r); r.j += rad2rrad( +r.H0 - r.H )/sv;
this.Mcoord(r.z,0,r); r.z += rad2rrad( 0 - r.H )/sv;
this.Mcoord(r.x,0,r); r.x += rad2rrad( Math.PI - r.H )/sv;
return r;
},
Scoord:function(jd,xm,r){ //章动同时影响恒星时和天体坐标,所以不计算章动。返回时角及赤经纬
var z = new Array( XL.E_Lon( (jd+this.dt)/36525, 5 ) + Math.PI - 20.5/rad, 0,1); //太阳坐标(修正了光行差)
z = llrConv( z, this.E ); //转为赤道坐标
r.H = rad2rrad( pGST(jd,this.dt) + this.L - z[0] ); //得到此刻天体时角
if(xm==10||xm==1) r.H1 = this.getH(-50*60/rad, z[1]); //地平以下50分
if(xm==10||xm==2) r.H2 = this.getH(-6*3600/rad, z[1]); //地平以下6度
if(xm==10||xm==3) r.H3 = this.getH(-12*3600/rad,z[1]); //地平以下12度
if(xm==10||xm==4) r.H4 = this.getH(-18*3600/rad,z[1]); //地平以下18度
},
St : function(jd){ //太阳到中升降时刻计算,传入jd是当地中午12点时间对应的2000年首起算的格林尼治时间UT
this.dt = dt_T(jd);
this.E = hcjj(jd/36525);
jd -= mod2(jd + this.L/pi2, 1); //查找最靠近当日中午的日上中天,mod2的第1参数为本地时角近似值
var r = new Array(), sv = pi2;
r.z = r.x = r.s = r.j = r.c = r.h = r.c2 = r.h2 = r.c3 = r.h3 = jd; r.sm = '';
this.Scoord(jd,10,r); //太阳坐标
r.s += (-r.H1 - r.H )/sv; //升起
r.j += ( r.H1 - r.H )/sv; //降落
r.c += (-r.H2 - r.H )/sv; //民用晨
r.h += ( r.H2 - r.H )/sv; //民用昏
r.c2+= (-r.H3 - r.H )/sv; //航海晨
r.h2+= ( r.H3 - r.H )/sv; //航海昏
r.c3+= (-r.H4 - r.H )/sv; //天文晨
r.h3+= ( r.H4 - r.H )/sv; //天文昏
r.z += ( 0 - r.H )/sv; //中天
r.x += ( Math.PI - r.H )/sv; //下中天
this.Scoord(r.s,1,r); r.s += rad2rrad( -r.H1 - r.H )/sv; if(r.H1==Math.PI) r.sm += '无升起.';
this.Scoord(r.j,1,r); r.j += rad2rrad( +r.H1 - r.H )/sv; if(r.H1==Math.PI) r.sm += '无降落.';
this.Scoord(r.c, 2,r); r.c += rad2rrad( -r.H2 - r.H )/sv; if(r.H2==Math.PI) r.sm += '无民用晨.';
this.Scoord(r.h, 2,r); r.h += rad2rrad( +r.H2 - r.H )/sv; if(r.H2==Math.PI) r.sm += '无民用昏.';
this.Scoord(r.c2,3,r); r.c2+= rad2rrad( -r.H3 - r.H )/sv; if(r.H3==Math.PI) r.sm += '无航海晨.';
this.Scoord(r.h2,3,r); r.h2+= rad2rrad( +r.H3 - r.H )/sv; if(r.H3==Math.PI) r.sm += '无航海昏.';
this.Scoord(r.c3,4,r); r.c3+= rad2rrad( -r.H4 - r.H )/sv; if(r.H4==Math.PI) r.sm += '无天文晨.';
this.Scoord(r.h3,4,r); r.h3+= rad2rrad( +r.H4 - r.H )/sv; if(r.H4==Math.PI) r.sm += '无天文昏.';
this.Scoord(r.z,0,r); r.z += ( 0 - r.H )/sv;
this.Scoord(r.x,0,r); r.x += rad2rrad( Math.PI - r.H )/sv;
return r;
},
rts:new Array(),//多天的升中降
calcRTS:function(jd,n,Jdl,Wdl,sq){ //多天升中降计算,jd是当地起始略日(中午时刻),sq是时区
var i,c,r;
if(!this.rts.length) { for(i=0;i<31;i++) this.rts[i] = new Array(); }
this.L = Jdl, this.fa = Wdl, sq/=24; //设置站点参数
for(i=0;i<n;i++){ r=this.rts[i]; r.Ms=r.Mz=r.Mj="--:--:--"; }
for(i=-1;i<=n;i++){
if(i>=0&&i<n){ //太阳
r = SZJ.St(jd+i+sq);
this.rts[i].s = JD.timeStr(r.s-sq); //升
this.rts[i].z = JD.timeStr(r.z-sq); //中
this.rts[i].j = JD.timeStr(r.j-sq); //降
this.rts[i].c = JD.timeStr(r.c-sq); //晨
this.rts[i].h = JD.timeStr(r.h-sq); //昏
this.rts[i].ch = JD.timeStr(r.h-r.c-0.5); //光照时间,timeStr()内部+0.5,所以这里补上-0.5
this.rts[i].sj = JD.timeStr(r.j-r.s-0.5); //昼长
}
r = SZJ.Mt(jd+i+sq); //月亮
c=int2(r.s-sq+0.5)-jd; if(c>=0&&c<n) this.rts[c].Ms = JD.timeStr(r.s-sq);
c=int2(r.z-sq+0.5)-jd; if(c>=0&&c<n) this.rts[c].Mz = JD.timeStr(r.z-sq);
c=int2(r.j-sq+0.5)-jd; if(c>=0&&c<n) this.rts[c].Mj = JD.timeStr(r.j-sq);
}
this.rts.dn = n;
}
};
//========行星天象及星历=============
//大距计算
function xingJJ(xt,t,jing){ //行星的距角,jing为精度控
var a,z, ga,gz;
a = p_coord(0, t,10,10,10); //地球
z = p_coord(xt,t,10,10,10); //行星
z = h2g(z,a); //转到地心
if(jing==0); //低精度
if(jing==1){ //中精度
a = p_coord(0, t,60,60,60); //地球
z = p_coord(xt,t,60,60,60); //行星
z = h2g(z,a); //转到地心
}
if(jing>=2){ //高精度(补光行时)
a = p_coord(0, t-a[2]*cs_Agx,-1,-1,-1); //地球
z = p_coord(xt,t-z[2]*cs_Agx,-1,-1,-1); //行星
z = h2g(z,a); //转到地心
}
a[0]+=Math.PI, a[1]=-a[1]; //太阳
return j1_j2(z[0],z[1],a[0],a[1]);
}
function daJu(xt,t,dx){ //大距计算超底速算法, dx=1东大距,t儒略世纪TD
var a,b,c;
if(xt==1) { a=115.8774777586/36525; c=new Array( 2, 0.2, 0.01, 46, 87 ); } //水星
if(xt==2) { a=583.9213708245/36525; c=new Array( 4, 0.2, 0.01, 382,521); } //金星
if(dx) b=c[3]/36525;
else b=c[4]/36525;
t = b + a * int2((t-b)/a+0.5); //大距平时间
var i,dt, r1,r2,r3;
for(i=0;i<3;i++){
dt=c[i]/36525;
r1 = xingJJ(xt,t-dt,i);
r2 = xingJJ(xt,t, i);
r3 = xingJJ(xt,t+dt,i);
t += (r1-r3)/(r1+r3-2*r2)*dt/2;
}
r2+= (r1-r3)/(r1+r3-2*r2)*(r3-r1)/8;
var re=new Array(t,r2);
return re;
}
function xingLiu0(xt,t,n,gxs){ //行星的视坐标
var a,z,E=hcjj(t),zd;
a = p_coord(0, t-gxs,n,n,n); //地球
z = p_coord(xt,t-gxs,n,n,n); //行星
z = h2g(z,a); //转到地心
if(gxs){ //如果计算了光行时,那么也计算章动
zd=nutation2(t); //章动计算
z[0] += zd[0];
E += zd[1];
}
z = llrConv(z,E);
return z;
}
function xingLiu(xt,t,sn){ //留,sn=1顺留
var i,y1,y2,y3, n, g;
//先求冲(下合)
var hh=cs_xxHH[xt-1]/36525; //会合周期
var v = pi2/hh; if(xt>2) v = -v; //行星相对地球的黄经平速度
for(i=0;i<6;i++) t -= rad2rrad( XL0_calc(xt,0,t,8) -XL0_calc(0,0,t,8) ) / v; //水星的平速度与真速度相差较多,所以多算几次
var tt=new Array(5/36525,1/36525,0.5/36525,2e-6,2e-6), dt;
var tc=new Array(17.4,28,52,82,86,88,89,90);
tc = tc[xt-1]/36525;
if(sn){ if(xt>2) t-=tc; else t+=tc; } //顺留
else { if(xt>2) t+=tc; else t-=tc; } //逆留
for(i=0;i<4;i++){
dt = tt[i], n = 8, g = 0;
if(i>=3){
g = y2[2]*cs_Agx;
n = -1;
}
y1 = xingLiu0(xt,t-dt,n, g);
y2 = xingLiu0(xt,t, n, g);
y3 = xingLiu0(xt,t+dt,n, g);
t += (y1[0]-y3[0])/(y1[0]+y3[0]-2*y2[0])*dt/2;
}
return t;
}
//合月计算
function xingMP(xt,t,n,E, g){ //月亮行星视赤经差
var a,p,m;
a = p_coord( 0, t-g[1], n,n,n ); //地球
p = p_coord( xt,t-g[1], n,n,n ); //行星
m = m_coord( t-g[0], n,n,n ); //月亮
p = h2g( p, a );
m[0] += g[2]; p[0] += g[2];
m = llrConv( m, E+g[3] );
p = llrConv( p, E+g[3] );
var re = new Array( rad2rrad(m[0]-p[0]), m[1]-p[1], m[2]/cs_GS/86400/36525, p[2]/cs_GS/86400/36525*cs_AU ); //赤经差及光行时
return re;
}
function xingHY(xt,t){ //行星合月(视赤经),t儒略世纪TD
var i,d,d2,v,E, g=new Array(0,0,0,0);
for(i=0;i<3;i++){
d = xingMP(xt,t,8,0.4091, g);
t -= d[0]/8192;
}
E = hcjj(t);
var zd=nutation2(t);
g=new Array(d[2], d[3], zd[0], zd[1]); //光行时,章动
d = xingMP(xt,t,8,E, g);
d2= xingMP(xt,t+1e-6,8,E, g);
v = ( d2[0] - d[0] ) / 1e-6; //速度
d = xingMP(xt,t,30,E, g); t -= d[0]/v;
d = xingMP(xt,t,-1,E, g); t -= d[0]/v;
var re = new Array(t,d[1]);
return re;
}
//合冲日计算(视黄经合冲)
function xingSP(xt,t,n,w0,ts,tp){ //行星太阳视黄经差与w0的差
var a,p,s;
a = p_coord( 0, t-tp, n,n,n ); //地球
p = p_coord( xt,t-tp, n,n,n ); //行星
s = p_coord( 0, t-ts, n,n,n ); s[0]+=Math.PI; s[1] = -s[1]; //太阳
p = h2g( p, a );
var re = new Array( rad2rrad(p[0]-s[0]-w0), p[1]-s[1], s[2]*cs_Agx, p[2]*cs_Agx ); //赤经差及光行时
return re;
}
function xingHR(xt,t,f){ //xt星体号,t儒略世纪TD,f=1求冲(或下合)否则求合(或下合)
var i, a,b,v,dt=2e-5;
var w0=Math.PI, w1=0; //合(或上合)时,日心黄经差为180,地心黄经差为0
if(f){ //求冲(或下合)
w0=0; //日心黄经差
if(xt>2) w1=Math.PI; //地心黄经差(冲)
}
v = pi2/cs_xxHH[xt-1]*36525; if(xt>2) v = -v; //行星相对地球的黄经平速度
for(i=0;i<6;i++) t -= rad2rrad( XL0_calc(xt,0,t,8) -XL0_calc(0,0,t,8) -w0 ) / v; //水星的平速度与真速度相差较多,所以多算几次
//严格计算
a = xingSP(xt,t, 8,w1,0,0);
b = xingSP(xt,t+dt,8,w1,0,0);
v = (b[0]-a[0])/dt;
a = xingSP(xt,t,40,w1,a[2],a[3]); t -= a[0]/v;
a = xingSP(xt,t,-1,w1,a[2],a[3]); t -= a[0]/v;
var re = new Array(t,a[1]);
return re;
}
//星历计算
function xingX(xt,jd,L,fa){ //行星计算,jd力学时
//基本参数计算
var T=jd/36525;
var zd = nutation2(T);
var dL = zd[0], dE = zd[1]; //章动
var E = hcjj(T) + dE; //真黄赤交角
var gstPing = pGST2(jd); //平恒星时
var gst= gstPing + dL*Math.cos(E); //真恒星时(不考虑非多项式部分)
var z,a,z2,a2,s='';
var ra,rb,rc,rfn=8;
if(xt==10){ //月亮
rfn = 2;
//求光行时并精确求出地月距
a = e_coord(T,15,15,15); //地球
z = m_coord(T,1,1,-1); ra = z[2]; //月亮
T -= ra*cs_Agx/cs_AU; //光行时计算
//求视坐标
a2 = e_coord(T,15,15,15);//地球
z = m_coord(T,-1,-1,-1); rc = z[2]; //月亮
//求光行距
a2 = h2g(a,a2); a2[2] *= cs_AU;
z2 = h2g(z,a2); rb = z2[2];
//地心黄道及地心赤道
z[0] = rad2mrad(z[0]+dL);
s += '视黄经 ' +rad2str(z[0],0) +' 视黄纬 ' +rad2str(z[1],0) +' 地心距 ' +ra.toFixed(rfn)+'\r\n';
z = llrConv(z,E); //转到赤道坐标
s += '视赤经 ' +rad2str(z[0],1) +' 视赤纬 ' +rad2str(z[1],0) +' 光行距 ' +rb.toFixed(rfn)+'\r\n';
}
if(xt<10){ //行星和太阳
a = p_coord(0, T,-1,-1,-1); //地球
z = p_coord(xt,T,-1,-1,-1); //行星
z[0] = rad2mrad(z[0]);
s += '黄经一 ' +rad2str(z[0],0) +' 黄纬一 ' +rad2str(z[1],0) +' 向径一 ' +z[2].toFixed(rfn)+'\r\n';
//地心黄道
z = h2g(z,a); ra = z[2]; //ra地心距
T -= ra*cs_Agx; //光行时
//重算坐标
a2 = p_coord(0, T,-1,-1,-1); //地球
z2 = p_coord(xt,T,-1,-1,-1); //行星
z = h2g(z2,a); rb = z[2]; //rb光行距(在惯性系中看)
z = h2g(z2,a2); rc = z[2]; //rc视距
z[0] = rad2mrad(z[0]+dL); //补章动
s += '视黄经 ' +rad2str(z[0],0) +' 视黄纬 ' +rad2str(z[1],0) +' 地心距 ' +ra.toFixed(rfn)+'\r\n';
z = llrConv(z,E); //转到赤道坐标
s += '视赤经 ' +rad2str(z[0],1) +' 视赤纬 ' +rad2str(z[1],0) +' 光行距 ' +rb.toFixed(rfn)+'\r\n';
}
var sj = rad2rrad(gst + L - z[0]); //得到天体时角
parallax(z, sj,fa, 0); //视差修正
s += '站赤经 ' +rad2str(z[0],1) +' 站赤纬 ' +rad2str(z[1],0) +' 视距离 ' +rc.toFixed(rfn)+'\r\n';
z[0] += Math.PI/2-gst-L; //修正了视差的赤道坐标
z = llrConv( z, Math.PI/2-fa ); //转到时角坐标转到地平坐标
z[0] = rad2mrad( Math.PI/2-z[0] );
if(z[1]>0) z[1] += MQC(z[1]); //大气折射修正
s += '方位角 ' +rad2str(z[0],0) +' 高度角 ' +rad2str(z[1],0)+'\r\n';
s += '恒星时 ' +rad2str(rad2mrad(gstPing),1) +'(平) ' +rad2str(rad2mrad(gst),1)+'(真)\r\n';
return s;
}
//========日月食计算使用的一些函数=============
function lineEll(x1,y1,z1, x2,y2,z2, e,r){ //求空间两点连线与地球的交点(靠近点x1的交点)
var dx=x2-x1, dy=y2-y1, dz=z2-z1, e2=e*e, A,B,C,D,R,t, p=new Object();
A = dx*dx + dy*dy + dz*dz/e2;
B = x1*dx + y1*dy + z1*dz/e2;
C = x1*x1 + y1*y1 + z1*z1/e2 - r*r;
p.D = B*B-A*C; if(p.D<0) return p; //判别式小于0无解
D = sqrt(p.D); if(B<0) D = -D; //只求靠近x1的交点
t = (-B+D)/A;
p.x=x1+dx*t, p.y=y1+dy*t, p.z=z1+dz*t;
R = sqrt(dx*dx + dy*dy + dz*dz);
p.R1 = R*abs(t), p.R2 = R*abs(t-1); //R1,R2分别为x1,x2到交点的距离
return p;
}
function lineEar2(x1,y1,z1, x2,y2,z2, e,r, I){ //I是贝塞尔坐标参数
var P=cos(I[1]), Q=sin(I[1]);
var X1=x1, Y1=P*y1-Q*z1, Z1=Q*y1+P*z1;
var X2=x2, Y2=P*y2-Q*z2, Z2=Q*y2+P*z2;
var p=lineEll(X1,Y1,Z1, X2,Y2,Z2, e,r);
p.J=p.W=100;
if(p.D<0) return p;
p.J = rad2rrad(atan2(p.y,p.x)+I[0]-I[2]);
p.W = atan( p.z/e/e/sqrt(p.x*p.x+p.y*p.y) );
return p;
}
function lineEar(P,Q,gst){ //在分点坐标中求空间两点连线与地球的交点(靠近点P的交点),返回地标
var p=llr2xyz(P), q=llr2xyz(Q);
var r=lineEll(p[0],p[1],p[2], q[0],q[1],q[2], cs_ba,cs_rEar);
if(r.D<0) { r.J=r.W=100; return r; } //反回100表示无解
r.W = atan( r.z/cs_ba2/sqrt(r.x*r.x+r.y*r.y) );
r.J = rad2rrad( atan2(r.y,r.x)-gst );
return r;
}
/****
function cirCir(R,R2,x0,y0){ //两圆的交点,R主圆半径,R2次圆半径,x0,y0次圆圆心
var re = new Object();
var d = sqrt(x0*x0+y0*y0);
var sinB = y0/d, cosB = x0/d;
var cosA = (R*R+d*d-R2*R2)/(2*d*R);
if(abs(cosA)>1){ re.n=0; return re; } //无解
var sinA=sqrt(1-cosA*cosA);
var c1=R*cosA*cosB, c2=R*sinA*sinB;
var c3=R*cosA*sinB, c4=R*sinA*cosB;
re.A=[c1-c2,c3+c4]; //第一个交点
re.B=[c1+c2,c3-c4]; //第二个交点
re.n=2;
return re;
}
****/
function cirOvl(R,ba,R2,x0,y0){ //椭圆与圆的交点,R椭圆长半径,R2圆半径,x0,y0圆的圆心
var re = new Object();
var d = sqrt(x0*x0+y0*y0);
var sinB = y0/d, cosB = x0/d;
var cosA = (R*R+d*d-R2*R2)/(2*d*R);
if(abs(cosA)>1){ re.n=0; return re; } //无解
var sinA = Math.sqrt(1-cosA*cosA);
var k,g,ba2=ba*ba, C,S;
for(k=-1;k<2;k+=2){
S = cosA*sinB + sinA*cosB*k;
g= R - S*S*(1/ba2-1)/2;
cosA = (g*g+d*d-R2*R2)/(2*d*g);
if(Math.abs(cosA)>1){ re.n=0; return re; } //无解
sinA = Math.sqrt(1-cosA*cosA);
C = cosA*cosB - sinA*sinB*k;
S = cosA*sinB + sinA*cosB*k;
if(k==1) re.A=[g*C,g*S]; else re.B=[g*C,g*S];
}
re.n=2;
return re;
}
function lineOvl(x1,y1,dx,dy,r,ba){
var A,B,C,D,L,t1,t2, p=new Object();
var f=ba*ba;
A = dx*dx + dy*dy/f;
B = x1*dx + y1*dy/f;
C = x1*x1 + y1*y1/f - r*r;
D = B*B-A*C; if(D<0) { p.n=0; return p; }//判别式小于0无解
if(!D) p.n=1; else p.n=2;
D = Math.sqrt(D);
t1 = (-B+D)/A, t2 = (-B-D)/A;
p.A = [x1+dx*t1,y1+dy*t1];
p.B = [x1+dx*t2,y1+dy*t2];
L = sqrt(dx*dx + dy*dy);
p.R1 = L*Math.abs(t1); //x1到交点1的距离
p.R2 = L*Math.abs(t2); //x1到交点2的距离
return p;
}
//========太阳月亮计算类=============
var msc={
calc:function(T,L,fa,high){ //sun_moon类的成员函数。参数:T是力学时,站点经纬L,fa,海拔high(千米)
//基本参数计算
this.T=T, this.L=L, this.fa=fa;
this.dt = dt_T(T); //TD-UT
this.jd = T - this.dt; //UT
T/=36525;
var zd = nutation2(T);
this.dL = zd[0]; //黄经章
this.dE = zd[1]; //交角章动
this.E = hcjj(T) + this.dE; //真黄赤交角
this.gst= pGST(this.jd,this.dt) + this.dL*Math.cos(this.E); //真恒星时(不考虑非多项式部分)
var z=new Array();
//=======月亮========
//月亮黄道坐标
z=m_coord(T,-1,-1,-1); //月球坐标
z[0] = rad2mrad( z[0]+gxc_moonLon(T)+this.dL ); z[1] += gxc_moonLat(T); //补上月球光行差及章动
this.mHJ = z[0]; this.mHW = z[1]; this.mR = z[2]; //月球视黄经,视黄纬,地月质心距
//月球赤道坐标
z = llrConv( z, this.E ); //转为赤道坐标
this.mCJ = z[0]; this.mCW = z[1]; //月球视赤经,月球赤纬
//月亮时角计算
this.mShiJ = rad2mrad(this.gst + L - z[0]); //得到此刻天体时角
if( this.mShiJ>Math.PI ) this.mShiJ -= pi2;
//修正了视差的赤道坐标
parallax(z, this.mShiJ,fa, high); //视差修正
this.mCJ2 = z[0], this.mCW2 = z[1], this.mR2=z[2];
//月亮时角坐标
z[0] += Math.PI/2-this.gst-L; //转到相对于地平赤道分点的赤道坐标(时角坐标)
//月亮地平坐标
z = llrConv (z, Math.PI/2-fa ); //转到地平坐标(只改经纬度)
z[0] = rad2mrad( Math.PI/2-z[0] );
this.mDJ = z[0]; this.mDW = z[1]; //方位角,高度角
if(z[1]>0) z[1] += MQC(z[1]); //大气折射修正
this.mPJ = z[0]; this.mPW = z[1]; //方位角,高度角
//=======太阳========
//太阳黄道坐标
z = e_coord(T,-1,-1,-1); //地球坐标
z[0] = rad2mrad(z[0]+Math.PI+gxc_sunLon(T)+this.dL); //补上太阳光行差及章动
z[1] =-z[1] + gxc_sunLat(T); //z数组为太阳地心黄道视坐标
this.sHJ = z[0]; this.sHW = z[1]; this.sR = z[2]; //太阳视黄经,视黄纬,日地质心距
//太阳赤道坐标
z = llrConv( z, this.E ); //转为赤道坐标
this.sCJ = z[0]; this.sCW = z[1]; //太阳视赤经,视赤纬
//太阳时角计算
this.sShiJ = rad2mrad(this.gst + L - z[0]); //得到此刻天体时角
if( this.sShiJ>Math.PI ) this.sShiJ -= pi2;
//修正了视差的赤道坐标
parallax(z,this.sShiJ,fa,high); //视差修正
this.sCJ2=z[0], this.sCW2=z[1], this.sR2=z[2];
//太阳时角坐标
z[0] += Math.PI/2-this.gst-L; //转到相对于地平赤道分点的赤道坐标
//太阳地平坐标
z = llrConv( z, Math.PI/2-fa );
z[0] = rad2mrad( Math.PI/2-z[0] );
//z[1] -= 8.794/rad/z[2]*Math.cos(z[1]); //直接在地平坐标中视差修正(这里把地球看为球形,精度比parallax()稍差一些)
this.sDJ = z[0]; this.sDW = z[1]; //方位角,高度角
if(z[1]>0) z[1] += MQC(z[1]); //大气折射修正
this.sPJ = z[0]; this.sPW = z[1]; //方位角,高度角
//=======其它========
//时差计算
var t=T/10, t2=t*t,t3=t2*t,t4=t3*t,t5=t4*t;
var Lon = ( 1753470142 + 6283319653318*t + 529674*t2 + 432*t3 - 1124*t4 - 9*t5 )/1000000000 + Math.PI - 20.5/rad; //修正了光行差的太阳平黄经
Lon = rad2mrad( Lon - (this.sCJ-this.dL*Math.cos(this.E)) ); //(修正了光行差的平黄经)-(不含dL*cos(E)的视赤经)
if(Lon>Math.PI) Lon-=pi2; //得到时差,单位是弧度
this.sc = Lon/pi2; //时差(单位:日)
//真太阳与平太阳
this.pty = this.jd+L/pi2; //平太阳时
this.zty = this.jd+L/pi2+this.sc; //真太阳时
//视半径
//this.mRad = XL.moonRad(this.mR,this.mDW); //月亮视半径(角秒)
this.mRad = cs_sMoon/this.mR2; //月亮视半径(角秒)
this.sRad = 959.63/this.sR2; //太阳视半径(角秒)
this.e_mRad = cs_sMoon/this.mR; //月亮地心视半径(角秒)
this.eShadow = (cs_rEarA/this.mR*rad-(959.63-8.794)/this.sR )*51/50; //地本影在月球向径处的半径(角秒),式中51/50是大气厚度补偿
this.eShadow2= (cs_rEarA/this.mR*rad+(959.63+8.794)/this.sR )*51/50; //地半影在月球向径处的半径(角秒),式中51/50是大气厚度补偿
this.mIll = XL.moonIll(T); //月亮被照面比例
//中心食计算
if( Math.abs(rad2rrad(this.mCJ-this.sCJ))<50/180*Math.PI ){
var pp = lineEar( new Array(this.mCJ,this.mCW,this.mR), new Array(this.sCJ,this.sCW,this.sR*cs_AU), this.gst );
this.zx_J = pp.J;
this.zx_W = pp.W; //无解返回值是100
} else this.zx_J=this.zx_W=100;
},
toHTML:function(fs){
var s = '<table width="100%" cellspacing=1 cellpadding=0 bgcolor="#FFC0C0">';
s += '<tr><td bgcolor=white align=center>';
s += '平太阳 ' + JD.timeStr(this.pty) + ' 真太阳 <font color=red>' + JD.timeStr(this.zty) + '</font><br>';
s += '时差 ' + m2fm(this.sc*86400,2,1) + " 月亮被照亮 " + (this.mIll*100).toFixed(2)+'% ';
s += '</td></tr>';
s += '<tr><td bgcolor=white><center><pre style="margin-top: 0; margin-bottom: 0"><font color=blue><b>表一 月亮 太阳</b></font>\r\n';
s += '视黄经 ' + rad2str(this.mHJ,0) +' '+ rad2str(this.sHJ,0) + '\r\n';
s += '视黄纬 ' + rad2str(this.mHW,0) +' '+ rad2str(this.sHW,0) + '\r\n';
s += '视赤经 ' + rad2str(this.mCJ,1) +' '+ rad2str(this.sCJ,1) + '\r\n';
s += '视赤纬 ' + rad2str(this.mCW,0) +' '+ rad2str(this.sCW,0) + '\r\n';
s += '距离 ' + (this.mR).toFixed(2) +'千米 '+ (this.sR).toFixed(8)+'AU'+'\r\n';
s += '</pre></center></td></tr>';
s += '<tr><td bgcolor=white><center><pre style="margin-top: 0; margin-bottom: 0"><font color=blue><b>表二 月亮 太阳</b></font>\r\n';
s += '方位角 ' + rad2str(this.mPJ,0) +' '+ rad2str(this.sPJ,0) + '\r\n';
s += '高度角 ' + rad2str(this.mPW,0) +' '+ rad2str(this.sPW,0) + '\r\n';
s += '时角 ' + rad2str(this.mShiJ,0)+' '+rad2str(this.sShiJ,0)+'\r\n';
s += '视半径(观测点) ' + m2fm(this.mRad,2,0) +' '+ m2fm(this.sRad,2,0)+'\r\n';
s += '</pre></center></td></tr>';
if(fs){
s += '<tr><td bgcolor=white align=center>';
s += '力学时 ' +JD.JD2str(this.T+J2000);
s += ' ΔT=' + (this.dt*86400).toFixed(1) +'秒<br>';
s += '黄经章 '+(this.dL/pi2*360*3600).toFixed(2) +'" ';
s += '交角章 '+(this.dE/pi2*360*3600).toFixed(2) +'" ';
s += 'ε='+rad2str(this.E,0);
s += '</td></tr>';
}
s += '</table>';
return s;
}
};
//====================================
var ysPL={ //月食快速计算器
lineT:function(G, v,u, r, n){//已知t1时刻星体位置、速度,求x*x+y*y=r*r时,t的值
var b=G.y*v-G.x*u, A=u*u+v*v, B=u*b, C=b*b-r*r*v*v, D=B*B-A*C;
if(D<0) return 0;
D=Math.sqrt(D); if(!n) D=-D;
return G.t+((-B+D)/A-G.x)/v;
},
lecXY:function(jd,re){//日月黄经纬差转为日面中心直角坐标(用于月食)
var T=jd/36525, zm=new Array(), zs=new Array();
//=======太阳月亮黄道坐标========
zs = e_coord(T,-1,-1,-1); //地球坐标
zs[0] = rad2mrad(zs[0]+Math.PI+gxc_sunLon(T)); zs[1] =-zs[1] + gxc_sunLat(T); //补上太阳光行差
zm = m_coord(T,-1,-1,-1); //月球坐标
zm[0] = rad2mrad( zm[0]+gxc_moonLon(T) ); zm[1] += gxc_moonLat(T); //补上月球光行差就可以了
//=======视半径=======
re.e_mRad = cs_sMoon/zm[2]; //月亮地心视半径(角秒)
re.eShadow = (cs_rEarA/zm[2]*rad-(959.63-8.794)/zs[2] )*51/50; //地本影在月球向径处的半径(角秒),式中51/50是大气厚度补偿
re.eShadow2= (cs_rEarA/zm[2]*rad+(959.63+8.794)/zs[2] )*51/50; //地半影在月球向径处的半径(角秒),式中51/50是大气厚度补偿
re.x = rad2rrad(zm[0]+Math.PI-zs[0]) * Math.cos((zm[1]-zs[1])/2);
re.y = zm[1]+zs[1];
re.mr= re.e_mRad/rad, re.er=re.eShadow/rad, re.Er=re.eShadow2/rad;
re.t = jd;
},
lecMax:function(jd){ //月食的食甚计算(jd为近朔的力学时,误差几天不要紧)
this.lT=new Array();
for(var i=0;i<7;i++) this.lT[i]=0; //分别是:食甚,初亏,复圆,半影食始,半影食终,食既,生光
this.sf=0;
this.LX='';
jd = XL.MS_aLon_t2( Math.floor((jd-4)/29.5306)*Math.PI*2 +Math.PI)*36525; //低精度的朔(误差10分钟),与食甚相差10分钟左右
var g=new Object(), G=new Object(), u,v;
//求极值(平均误差数秒)
u = -18461 * Math.sin(0.057109+0.23089571958*jd)*0.23090/rad; //月日黄纬速度差
v = (XL.M_v(jd/36525)-XL.E_v(jd/36525))/36525; //月日黄经速度差
this.lecXY(jd,G);
jd -= (G.y*u+G.x*v)/(u*u+v*v); //极值时间
//精密求极值
var dt=60/86400;
this.lecXY(jd,G); this.lecXY(jd+dt,g); //精密差分得速度,再求食甚
u = (g.y-G.y)/dt;
v = (g.x-G.x)/dt;
dt= -(G.y*u+G.x*v)/(u*u+v*v); jd += dt; //极值时间
//求直线到影子中心的最小值
var x=G.x+dt*v, y=G.y+dt*u, rmin=Math.sqrt(x*x+y*y);
//注意,以上计算得到了极值及最小距rmin,但没有再次计算极值时刻的半径,对以下的判断造成一定的风险,必要的话可以再算一次。不过必要性不很大,因为第一次极值计算已经很准确了,误差只有几秒
//求月球与影子的位置关系
if(rmin<=G.mr+G.er){ //食计算
this.lT[1] = jd; //食甚
this.LX = '偏';
this.sf=(G.mr+G.er-rmin)/G.mr/2; //食分
this.lT[0] = this.lineT(G,v,u, G.mr+G.er, 0); //初亏
this.lecXY(this.lT[0],g);
this.lT[0] = this.lineT(g,v,u, g.mr+g.er, 0); //初亏再算一次
this.lT[2] = this.lineT(G,v,u, G.mr+G.er, 1); //复圆
this.lecXY(this.lT[2],g);
this.lT[2] = this.lineT(g,v,u, g.mr+g.er, 1); //复圆再算一次
}
if(rmin<=G.mr+G.Er){ //半影食计算
this.lT[3] = this.lineT(G,v,u, G.mr+G.Er, 0); //半影食始
this.lecXY(this.lT[3],g);
this.lT[3] = this.lineT(g,v,u, g.mr+g.Er, 0); //半影食始再算一次
this.lT[4] = this.lineT(G,v,u, G.mr+G.Er, 1); //半影食终
this.lecXY(this.lT[4],g);
this.lT[4] = this.lineT(g,v,u, g.mr+g.Er, 1); //半影食终再算一次
}
if(rmin<=G.er-G.mr){ //全食计算
this.LX = '全';
this.lT[5] = this.lineT(G,v,u, G.er-G.mr, 0); //食既
this.lecXY(this.lT[5],g);
this.lT[5] = this.lineT(g,v,u, g.er-g.mr, 0); //食既再算一次
this.lT[6] = this.lineT(G,v,u, G.er-G.mr, 1); //生光
this.lecXY(this.lT[6],g);
this.lT[6] = this.lineT(g,v,u, g.er-g.mr, 1); //生光再算一次
}
}
};
//====================================
/*****
ecFast()函数返回参数说明
r.jdSuo 朔时刻
r.lx 日食类型
*****/
function ecFast(jd){ //快速日食搜索,jd为朔时间(J2000起算的儒略日数,不必很精确)
var re=new Object();
var t,t2,t3,t4;
var L,mB,mR,sR, vL,vB,vR;
var W = Math.floor((jd+8)/29.5306)*Math.PI*2; //合朔时的日月黄经差
//合朔时间计算,2000前+-4000年误差1小时以内,+-2000年小于10分钟
t = ( W + 1.08472 )/7771.37714500204; //平朔时间
re.jd = re.jdSuo = t*36525;
t2=t*t,t3=t2*t,t4=t3*t;
L = ( 93.2720993+483202.0175273*t-0.0034029*t2-t3/3526000+t4/863310000 )/180*Math.PI;
re.ac=1, re.lx='N';
if(Math.abs(Math.sin(L))>0.4) return re; //一般大于21度已不可能
t -= ( -0.0000331*t*t + 0.10976 *Math.cos( 0.785 + 8328.6914*t) )/7771;
t2=t*t;
L = -1.084719 +7771.377145013*t -0.0000331*t2 +
(22640 * Math.cos(0.785+ 8328.6914*t +0.000152*t2)
+4586 * Math.cos(0.19 + 7214.063*t -0.000218*t2)
+2370 * Math.cos(2.54 + 15542.754*t -0.000070*t2)
+ 769 * Math.cos(3.1 + 16657.383*t)
+ 666 * Math.cos(1.5 + 628.302*t)
+ 412 * Math.cos(4.8 + 16866.93*t)
+ 212 * Math.cos(4.1 -1114.63*t)
+ 205 * Math.cos(0.2 + 6585.76*t)
+ 192 * Math.cos(4.9 + 23871.45*t)
+ 165 * Math.cos(2.6 + 14914.45*t)
+ 147 * Math.cos(5.5 -7700.39*t)
+ 125 * Math.cos(0.5 + 7771.38*t)
+ 109 * Math.cos(3.9 + 8956.99*t)
+ 55 * Math.cos(5.6 -1324.18*t)
+ 45 * Math.cos(0.9 + 25195.62*t)
+ 40 * Math.cos(3.8 -8538.24*t)
+ 38 * Math.cos(4.3 + 22756.82*t)
+ 36 * Math.cos(5.5 + 24986.07*t)
-6893 * Math.cos(4.669257+628.3076*t)
- 72 * Math.cos(4.6261 +1256.62*t)
- 43 * Math.cos(2.67823 +628.31*t)*t
+ 21) / rad;
t += ( W - L ) / ( 7771.38
- 914 * Math.sin( 0.7848 + 8328.691425*t + 0.0001523*t2 )
- 179 * Math.sin( 2.543 +15542.7543*t )
- 160 * Math.sin( 0.1874 + 7214.0629*t ) );
re.jd = re.jdSuo = jd = t*36525; //朔时刻
//纬 52,15 (角秒)
t2=t*t/10000,t3=t2*t/10000;
mB=
18461*Math.cos(0.0571+ 8433.46616*t -0.640*t2 -1*t3)
+ 1010*Math.cos(2.413 + 16762.1576 *t + 0.88 *t2 + 25*t3)
+ 1000*Math.cos(5.440 -104.7747 *t + 2.16 *t2 + 26*t3)
+ 624*Math.cos(0.915 + 7109.2881 *t + 0 *t2 + 7*t3)
+ 199*Math.cos(1.82 + 15647.529 *t -2.8 *t2 -19*t3)
+ 167*Math.cos(4.84 -1219.403 *t -1.5 *t2 -18*t3)
+ 117*Math.cos(4.17 + 23976.220 *t -1.3 *t2 + 6*t3)
+ 62*Math.cos(4.8 + 25090.849 *t + 2 *t2 + 50*t3)
+ 33*Math.cos(3.3 + 15437.980 *t + 2 *t2 + 32*t3)
+ 32*Math.cos(1.5 + 8223.917 *t + 4 *t2 + 51*t3)
+ 30*Math.cos(1.0 + 6480.986 *t + 0 *t2 + 7*t3)
+ 16*Math.cos(2.5 -9548.095 *t -3 *t2 -43*t3)
+ 15*Math.cos(0.2 + 32304.912 *t + 0 *t2 + 31*t3)
+ 12*Math.cos(4.0 + 7737.590 *t)
+ 9*Math.cos(1.9 + 15019.227 *t)
+ 8*Math.cos(5.4 + 8399.709 *t)
+ 8*Math.cos(4.2 + 23347.918 *t)
+ 7*Math.cos(4.9 -1847.705 *t)
+ 7*Math.cos(3.8 -16133.856 *t)
+ 7*Math.cos(2.7 + 14323.351 *t);
mB/=rad;
//距 106, 23 (千米)
mR = 385001
+20905*Math.cos(5.4971+ 8328.691425*t+ 1.52 *t2 + 25*t3)
+ 3699*Math.cos(4.900 + 7214.06287*t -2.18 *t2 -19*t3)
+ 2956*Math.cos(0.972 + 15542.75429*t -0.66 *t2 + 6*t3)
+ 570*Math.cos(1.57 + 16657.3828 *t + 3.0 *t2 + 50*t3)
+ 246*Math.cos(5.69 -1114.6286 *t -3.7 *t2 -44*t3)
+ 205*Math.cos(1.02 + 14914.4523 *t -1 *t2 + 6*t3)
+ 171*Math.cos(3.33 + 23871.4457 *t + 1 *t2 + 31*t3)
+ 152*Math.cos(4.94 + 6585.761 *t -2 *t2 -19*t3)
+ 130*Math.cos(0.74 -7700.389 *t -2 *t2 -25*t3)
+ 109*Math.cos(5.20 + 7771.377 *t)
+ 105*Math.cos(2.31 + 8956.993 *t + 1 *t2 + 25*t3)
+ 80*Math.cos(5.38 -8538.241 *t + 2.8 *t2 + 26*t3)
+ 49*Math.cos(6.24 + 628.302 *t)
+ 35*Math.cos(2.7 + 22756.817 *t -3 *t2 -13*t3)
+ 31*Math.cos(4.1 + 16171.056 *t -1 *t2 + 6*t3)
+ 24*Math.cos(1.7 + 7842.365 *t -2 *t2 -19*t3)
+ 23*Math.cos(3.9 + 24986.074 *t + 5 *t2 + 75*t3)
+ 22*Math.cos(0.4 + 14428.126 *t -4 *t2 -38*t3)
+ 17*Math.cos(2.0 + 8399.679 *t);
mR/=6378.1366;
t=jd/365250, t2=t*t, t3=t2*t;
//误0.0002AU
sR = 10001399 //日地距离
+167070*Math.cos(3.098464 + 6283.07585*t)
+ 1396*Math.cos(3.0552 + 12566.1517 *t)
+ 10302*Math.cos(1.10749 + 6283.07585*t)*t
+ 172*Math.cos(1.064 + 12566.152 *t)*t
+ 436*Math.cos(5.785 + 6283.076 *t)*t2
+ 14*Math.cos(4.27 + 6283.08 *t)*t3;
sR*=1.49597870691/6378.1366*10;
//经纬速度
t=jd/36525;
vL = 7771 //月日黄经差速度
-914*Math.sin(0.785 + 8328.6914*t)
-179*Math.sin(2.543 +15542.7543*t)
-160*Math.sin(0.187 + 7214.0629*t);
vB =-755*Math.sin(0.057 + 8433.4662*t) //月亮黄纬速度
- 82*Math.sin(2.413 +16762.1576*t);
vR =-27299*Math.sin(5.497 + 8328.691425*t)
- 4184*Math.sin(4.900 + 7214.06287*t)
- 7204*Math.sin(0.972 +15542.75429*t);
vL/=36525, vB/=36525, vR/=36525; //每日速度
var gm = mR*Math.sin(mB)*vL/Math.sqrt(vB*vB+vL*vL), smR=sR-mR; //gm伽马值,smR日月距
var mk = 0.2725076, sk = 109.1222;
var f1 = (sk+mk)/smR, r1 = mk+f1*mR; //tanf1半影锥角, r1半影半径
var f2 = (sk-mk)/smR, r2 = mk-f2*mR; //tanf2本影锥角, r2本影半径
var b = 0.9972, Agm = Math.abs(gm), Ar2 = Math.abs(r2);
var fh2 = mR-mk/f2, h = Agm<1 ? Math.sqrt(1-gm*gm) : 0; //fh2本影顶点的z坐标
var ls1,ls2,ls3,ls4;
if(fh2<h) re.lx = 'T';
else re.lx = 'A';
ls1 = Agm-(b+r1 ); if(Math.abs(ls1)<0.016) re.ac=0; //无食分界
ls2 = Agm-(b+Ar2); if(Math.abs(ls2)<0.016) re.ac=0; //偏食分界
ls3 = Agm-(b ); if(Math.abs(ls3)<0.016) re.ac=0; //无中心食分界
ls4 = Agm-(b-Ar2); if(Math.abs(ls4)<0.016) re.ac=0; //有中心食分界(但本影未全部进入)
if (ls1>0) re.lx = 'N'; //无日食
else if(ls2>0) re.lx = 'P'; //偏食
else if(ls3>0) re.lx += '0'; //无中心
else if(ls4>0) re.lx += '1'; //有中心(本影未全部进入)
else{ //本影全进入
if(Math.abs(fh2-h)<0.019) re.ac=0;
if( Math.abs(fh2)<h ){
var dr = vR*h/vL/mR;
var H1 = mR-dr-mk/f2; //入点影锥z坐标
var H2 = mR+dr-mk/f2; //出点影锥z坐标
if(H1>0) re.lx='H3'; //环全全
if(H2>0) re.lx='H2'; //全全环
if(H1>0&&H2>0) re.lx='H'; //环全环
if(Math.abs(H1)<0.019) re.ac=0;
if(Math.abs(H2)<0.019) re.ac=0;
}
}
return re;
}
var rsGS={
Zs : new Array(), //日月赤道坐标插值表
Zdt : 0.04, //插值点之间的时间间距
Zjd : 0, //插值表中心时间
dT : 0, //deltatT
tanf1: 0.0046, //半影锥角
tanf2: 0.0045, //本影锥角
srad : 0.0046, //太阳视半径
bba : 1, //贝圆极赤比
bhc : 0, //黄交线与赤交线的夹角简易作图用
dyj : 23500, //地月距
init:function(jd,n){ //创建插值表(根数表)
if(suoN(jd)==suoN(this.Zjd) && this.Zs.length==n*9) return;
this.Zs.length=0;
this.Zjd = jd = XL.MS_aLon_t2( suoN(jd)*Math.PI*2 )*36525; //低精度的朔(误差10分钟)
this.dT = dt_T(jd); //deltat T
var zd = nutation2(jd/36525); //章动
var E = hcjj(jd/36525)+zd[1]; //黄赤交角
var i,k,T, S,M,B, a=this.Zs;
for(i=0;i<n;i++){ //插值点范围不要超过360度(约1个月)
T=( this.Zjd + (i-n/2+0.5)*this.Zdt ) / 36525;
if(n==7) S = e_coord(T,-1,-1,-1), M = m_coord(T,-1,-1,-1); //地球坐标及月球坐标,全精度
if(n==3) S = e_coord(T,65,65,65), M = m_coord(T,-1,150,150); //中精度
if(n==2) S = e_coord(T,20,20,20), M = m_coord(T,30,30,30); //低精度
S[0] = S[0]+zd[0]+gxc_sunLon(T)+Math.PI; S[1] = -S[1] + gxc_sunLat(T); //补上太阳光行差及章动
M[0] = M[0]+zd[0]+gxc_moonLon(T); M[1] = M[1] + gxc_moonLat(T); //补上月球光行差及章动
S = llrConv( S, E ); M = llrConv( M, E ); S[2]*=cs_AU; //转为赤道坐标
if(i && S[0]<a[0]) S[0]+=pi2; //确保插值数据连续
if(i && M[0]<a[3]) M[0]+=pi2; //确保插值数据连续
k = i*9;
a[k+0]=S[0], a[k+1]=S[1], a[k+2]=S[2]; //存入插值表
a[k+3]=M[0], a[k+4]=M[1], a[k+5]=M[2];
//贝塞尔坐标的z轴坐标计算,得到a[k+6,7,8]交点赤经,贝赤交角,真恒星时
S=llr2xyz(S), M=llr2xyz(M);
B = xyz2llr( new Array(S[0]-M[0],S[1]-M[1],S[2]-M[2]) );
B[0] = Math.PI/2+B[0];
B[1] = Math.PI/2-B[1];
if(i && B[0]<a[6]) B[0]+=pi2; //确保插值数据连续
a[k+6]=B[0], a[k+7]=B[1], a[k+8]=pGST(T*36525-this.dT, this.dT)+zd[0]*cos(E); //真恒星时
}
//一些辅助参数的计算
var p=a.length-9;
this.dyj = (a[2]+a[p+2]-a[5]-a[p+5])/2/cs_rEar; //地月平均距离
this.tanf1 = (cs_k0+cs_k )/this.dyj; //tanf1半影锥角
this.tanf2 = (cs_k0-cs_k2)/this.dyj; //tanf2本影锥角
this.srad = cs_k0/((a[2]+a[p+2])/2/cs_rEar);
this.bba = Math.sin( (a[1]+a[p+1])/2 );
this.bba = cs_ba*(1+(1-cs_ba2)*this.bba*this.bba/2);
this.bhc = -atan(tan(E)*sin( (a[6]+a[p+6])/2 )); //黄交线与赤交线的夹角
},
chazhi:function(jd,xt){//日月坐标快速计算(贝赛尔插值法),计算第p个根数开始的m个根数
var p=xt*3,m=3; //计算第p个根数开始的m个根数
var i, N=this.Zs.length/9, B=this.Zs, z=new Array();
var w = B.length/N; //每节点个数
var t = (jd-this.Zjd)/this.Zdt+N/2-0.5; //相对于第一点的时间距离
if(N==2) { for(i=0; i<m; i++,p++) z[i] = B[p] + (B[p+w]-B[p])*t; return z; }
var c=Math.floor(t+0.5); if(c<=0) c=1; if(c>N-2) c=N-2; //确定c,并对超出范围的处理
t-=c, p+=c*w; //c插值中心,t为插值因子,t再转为插值中心在数据中的位置
for(i=0; i<m; i++,p++)
z[i] = B[p] + ( B[p+w]-B[p-w] + (B[p+w]+B[p-w]-B[p]*2)*t ) * t/2;
return z;
},
sun :function(jd){ return this.chazhi(jd,0); }, //传回值可能超过360度
moon:function(jd){ return this.chazhi(jd,1); },
bse :function(jd){ return this.chazhi(jd,2); },
cd2bse:function(z,I){ //赤道转贝塞尔坐标
var r=new Array(z[0]-I[0],z[1],z[2]);
r = llrConv(r,-I[1]);
return llr2xyz(r);
},
bse2cd:function(z,I){ //贝塞尔转赤道坐标
var r = xyz2llr(z);
r = llrConv(r,I[1]);
r[0] = rad2mrad(r[0]+I[0]);
return r;
},
bse2db:function(z,I,f){ //贝赛尔转地标(p点到原点连线与地球的交点,z为p点直角坐标),f=1时把地球看成椭球
var r = xyz2llr(z);
r = llrConv(r,I[1]);
r[0] = rad2rrad(r[0]+I[0]-I[2]);
if(f) r[1] = atan( tan(r[1])/cs_ba2 );
return r;
},
bseXY2db:function(x,y,I,f){ //贝赛尔转地标(过p点垂直于基面的线与地球的交点,p坐标为(x,y,任意z)),f=1时把地球看成椭球
var b=f?cs_ba:1;
var F = lineEar2(x,y,2, x,y,0, b,1,I);//求中心对应的地标
return [F.J,F.W];
},
bseM:function(jd){ //月亮的贝塞尔坐标
var a=this.cd2bse(this.chazhi(jd,1),this.chazhi(jd,2));
a[0]/=cs_rEar, a[1]/=cs_rEar, a[2]/=cs_rEar;
return a;
},
//以下计算日食总体情况
Vxy:function(x,y,s, vx,vy){ //地球上一点的速度,用贝塞尔坐标表达,s为贝赤交角
var r = new Object();
var h = 1-x*x-y*y;
if(h<0) h = 0; //越界置0,使速度场连续,置零有助于迭代时单向收敛
else h = sqrt(h);
r.vx = pi2*( sin(s)*h-cos(s)*y );
r.vy = pi2*x*cos(s);
r.Vx = vx - r.vx;
r.Vy = vy - r.vy;
r.V = sqrt(r.Vx*r.Vx+r.Vy*r.Vy);
return r;
},
rSM:function(mR){ //rm,rs单位千米
var re = new Object();
re.r1 = cs_k +this.tanf1*mR; //半影半径
re.r2 = cs_k2-this.tanf2*mR; //本影半径
re.ar2 = abs(re.r2);
re.sf = cs_k2/mR/cs_k0*(this.dyj+mR); //食分
return re;
},
qrd:function(jd,dx,dy, fs){ //求切入点
var ba2 = this.bba*this.bba;
var M = this.bseM(jd), x=M[0], y=M[1];
var B = this.rSM(M[2]);
var r = 0; if(fs==1) r = B.r1;
var d = 1-(1/ba2-1)*y*y/(x*x+y*y)/2 + r;
var t = (d*d-x*x-y*y)/(dx*x+dy*y)/2;
x+=t*dx, y+=t*dy, jd+=t;
var c=(1-ba2)*r*x*y/d/d/d;
x += c*y;
y -= c*x;
var re=this.bse2db([x/d,y/d,0],this.bse(jd),1);
//re[0] +=0.275/radd; //转为deltatT为66秒的历书经度
re[2]=jd;
return re;
},
feature:function(jd){//日食的基本特征
jd = this.Zjd; //低精度的朔(误差10分钟)
var tg=0.04,jd1=jd-tg/2, re=new Object(), ls;
var tg=0.04, re=new Object(), ls;
var a = this.bseM(jd-tg);
var b = this.bseM(jd);
var c = this.bseM(jd+tg);
var vx = (c[0]-a[0])/tg/2;
var vy = (c[1]-a[1])/tg/2;
var vz = (c[2]-a[2])/tg/2;
var ax = (c[0]+a[0]-2*b[0])/tg/tg;
var ay = (c[1]+a[1]-2*b[1])/tg/tg;
var v = Math.sqrt(vx*vx+vy*vy), v2=v*v;
//影轴在贝塞尔面扫线的特征参数
re.jdSuo = jd; //朔
re.dT = this.dT; //deltat T
re.ds = this.bhc; //黄交线与赤交线的夹角
re.vx = vx; //影速x
re.vy = vy; //影速y
re.ax = ax;
re.ay = ay;
re.v = v;
re.k = vy/vx; //斜率
var t0 = -(b[0]*vx+b[1]*vy)/v2;
re.jd = jd+t0; //中点时间
re.xc = b[0]+vx*t0; //中点坐标x
re.yc = b[1]+vy*t0; //中点坐标y
re.zc = b[2]+vz*t0-1.37*t0*t0; //中点坐标z
re.D = (vx*b[1]-vy*b[0])/v;
re.d = Math.abs(re.D); //直线到圆心的距离
re.I = this.bse(re.jd); //中心点的贝塞尔z轴的赤道坐标及恒星时,(J,W,g)
//影轴交点判断
var F = lineEar2(re.xc,re.yc,2, re.xc,re.yc,0, cs_ba,1,re.I);//求中心对应的地标
//四个关键点的影子半径计算
var Bc,Bp,B2,B3, dt,t2,t3,t4,t5,t6;
Bc=Bp=B2=B3 = this.rSM(re.zc); //中点处的影子半径
if(F.W!=100) Bp = this.rSM(re.zc - F.R2);
if(re.d<1){
dt=sqrt(1-re.d*re.d)/v; t2=t0-dt, t3=t0+dt; //中心始终参数
B2 = this.rSM(t2*vz+b[2]-1.37*t2*t2); //中心线始影半径
B3 = this.rSM(t3*vz+b[2]-1.37*t3*t3); //中心线终影半径
}
ls = 1; dt=0; if(re.d<ls) dt=sqrt(ls*ls-re.d*re.d)/v; t2=t0-dt, t3=t0+dt; //偏食始终参数,t2,t3
ls = 1+Bc.r1; dt=0; if(re.d<ls) dt=sqrt(ls*ls-re.d*re.d)/v; t4=t0-dt, t5=t0+dt; //偏食始终参数,t4,t5
t6 = -b[0]/vx; //视午参数l6
re.gk1 = this.qrd(t2+jd,vx,vy,0); //中心始
re.gk2 = this.qrd(t3+jd,vx,vy,0); //中心终
re.gk3 = this.qrd(t4+jd,vx,vy,1); //偏食始
re.gk4 = this.qrd(t5+jd,vx,vy,1); //偏食终
re.gk5 = this.bseXY2db(t6*vx+b[0],t6*vy+b[1], this.bse(t6+jd), 1); re.gk5[2]=t6+jd; //地方视午日食
//日食类型、最大食地标、食分、太阳地平坐标
if(F.W==100){ //无中心线
//最大食地标及时分
ls = this.bse2db([re.xc,re.yc,0],re.I, 0); re.zxJ=ls[0], re.zxW=ls[1]; //最大食地标
re.sf = (Bc.r1-(re.d-0.9972))/(Bc.r1-Bc.r2); //0.9969是南北极区的平半径
//类型判断
if (re.d>0.9972+Bc.r1) { re.lx = 'N'; } //无食,半影没有进入
else if(re.d>0.9972+Bc.ar2) { re.lx = 'P'; } //偏食,本影没有进入
else { if(Bc.sf<1) re.lx = 'A0'; else re.lx = 'T0'; } //中心线未进入,本影部分进入(无中心,所以只是部分地入)
}else{ //有中心线
//最大食地标及时分
re.zxJ=F.J, re.zxW=F.W; //最大食地标
re.sf = Bp.sf; //食分
//类型判断
if(re.d>0.9966-Bp.ar2) { if(Bp.sf<1) re.lx = 'A1'; else re.lx = 'T1'; } //中心进入,但本影没有完全进入
else{ //本影全进入有中心日食
if(Bp.sf>=1){
re.lx = 'H';
if(B2.sf>1) re.lx = 'H2'; //全环食,全始
if(B3.sf>1) re.lx = 'H3'; //全环食,全终
if(B2.sf>1 && B3.sf>1) re.lx='T'; //全食
} else re.lx = 'A'; //环食
}
}
re.Sdp = CD2DP(this.sun(re.jd),re.zxJ,re.zxW,re.I[2]); //太阳在中心点的地平坐标
//食带宽度和时延
if(F.W!=100){
re.dw = abs(2*Bp.r2*cs_rEar) / sin(re.Sdp[1]); //食带宽度
ls = this.Vxy(re.xc,re.yc,re.I[1], re.vx,re.vy); //求地表影速
re.tt = 2*abs(Bp.r2)/ls.V; //时延
} else re.dw = re.tt =0;
return re;
},
//界线图
push:function(z,p){ p[p.length]=z[0], p[p.length]=z[1]; }, //经度改为东经为正,所以有个负号
elmCpy:function(a,n, b,m){ //数据元素复制
if(!b.length) return;
if(n==-2) n=a.length;
if(m==-2) m=b.length;
if(n==-1) n=a.length-2;
if(m==-1) m=b.length-2;
a[n]=b[m], a[n+1]=b[m+1];
},
nanbei:function(M,vx0,vy0, h, r,I){ //vx0,vy0为影足速度(也是整个影子速度),h=1计算北界,h=-1计算南界
var x=M[0]-vy0/vx0*r*h, y=M[1]+h*r, z, i;
var vx,vy,v,sinA,cosA, js=0;
for(i=0;i<3;i++){
z = 1 - x*x - y*y;
if(z<0) { if(js) break; z=0;js++; } //z小于0则置0,如果两次小于0,可能不收敛造成的,故不再迭代了
z = Math.sqrt(z);
x -= (x-M[0])*z/M[2];
y -= (y-M[1])*z/M[2];
vx = vx0 - pi2*( sin(I[1])*z-cos(I[1])*y );
vy = vy0 - pi2* cos(I[1])*x;
v = Math.sqrt(vx*vx+vy*vy);
sinA = h*vy/v, cosA = h*vx/v;
x = M[0] - r*sinA, y = M[1] + r*cosA;
}
var X = M[0] - cs_k*sinA, Y = M[1] + cs_k*cosA;
var p = lineEar2(X,Y,M[2], x,y,0, cs_ba,1,I);
return [p.J, p.W, x, y];
},
mQie:function(M,vx0,vy0, h, r,I, A){ //vx0,vy0为影足速度(也是整个影子速度),h=1计算北界,h=-1计算南界
var p=this.nanbei(M,vx0,vy0,h,r,I);
if(!A.f2) A.f2=0; A.f = p[1]==100?0:1; //记录有无解
if(A.f2!=A.f){ //补线头线尾
var g=lineOvl(p[2],p[3],vx0,vy0,1,this.bba), dj, F;
if(g.n){
if(A.f) dj=g.R2, F=g.B;
else dj=g.R1, F=g.A;
F[2]=0;
var I2 = new Array( I[0], I[1], I[2] - dj/Math.sqrt(vx0*vx0+vy0*vy0)*6.28 ); //也可以不重算计算恒星时,直接用I[2]代替,但线头不会严格落在日出日没食甚线上
this.push( this.bse2db(F,I2,1), A);//有解补线头
}
}
A.f2 = A.f; //记录上次有无解
if(p[1]!=100) this.push(p,A);
},
mDian:function(M,vx0,vy0, AB, r,I, A){ //日出日没食甚
var i, p,a=M, R,c=new Object();
for(i=0;i<2;i++){ //迭代求交点
c = this.Vxy(a[0],a[1],I[1], vx0,vy0);
p = lineOvl(M[0],M[1],c.Vy,-c.Vx,1,this.bba);
if(!p.n) break;
if(AB) a=p.A, R=p.R1;
else a=p.B, R=p.R2;
}
if(p.n && R<=r){ //有交点
a=this.bse2db([a[0],a[1],0], I,1); //转为地标
this.push(a,A ); //保存第一食甚线A或B根
return 1;
}
return 0;
},
jieX:function(jd){ //日出日没的初亏食甚复圆线,南北界线等
var i, p, ls;
var re=this.feature(jd); //求特征参数
re.p1=new Array(), re.p2=new Array(), re.p3=new Array(), re.p4=new Array();
re.q1=new Array(), re.q2=new Array(), re.q3=new Array(), re.q4=new Array();
re.L1=new Array(), re.L2=new Array(), re.L3=new Array(), re.L4=new Array();
re.L5=new Array(), re.L6=new Array(); //0.5食分线
re.L0=new Array(); //中心线
var T = 1.7*1.7-re.d*re.d; if(T<0) T=0; T=Math.sqrt(T)/re.v+0.01;
var t=re.jd-T, N=200, dt=2*T/N;
var n1=0, n4=0; //n1切入时序
//对日出日没食甚线预置一个点
var Ua=re.q1,Ub=re.q2;
this.push([0,0],re.q2); this.push([0,0],re.q3); this.push([0,0],re.q4);
for(i=0;i<=N;i++,t+=dt){
var vx = re.vx+re.ax*(t-re.jdSuo);
var vy = re.vy+re.ay*(t-re.jdSuo);
var M = this.bseM(t); //此刻月亮贝塞尔坐标(其x和y正是影足)
var B = this.rSM(M[2]); //本半影等
var r = B.r1; //半影半径
var I = this.bse(t); //贝塞尔坐标参数
p=cirOvl(1,this.bba, r,M[0],M[1]); //求椭圆与圆交点
if(n1%2) {if(!p.n) n1++;} else {if(p.n) n1++;}
if(p.n) { //有交点
p.A[2]=p.B[2]=0; p.A=this.bse2db(p.A,I,1); p.B=this.bse2db(p.B,I,1); //转为地标
if(n1==1){ this.push(p.A,re.p1); this.push(p.B,re.p2); }//保存第一亏圆界线
if(n1==3){ this.push(p.A,re.p3); this.push(p.B,re.p4); }//保存第二亏圆界线
}
//日出日没食甚线
if( !this.mDian(M,vx,vy,0,r,I, Ua) ) { if(Ua.length>0) Ua=re.q3; };
if( !this.mDian(M,vx,vy,1,r,I, Ub) ) { if(Ub.length>2) Ub=re.q4; };
if(t>re.jd){
if(Ua.length==0) Ua=re.q3;
if(Ub.length==2) Ub=re.q4;
}
//求中心线
p = this.bseXY2db(M[0],M[1],I,1);
if( p[1]!=100&&n4==0 || p[1]==100&&n4==1 ){ //从无交点跳到有交点或反之
ls=lineOvl(M[0],M[1],vx,vy,1,this.bba);
var dj;
if(n4==0) dj=ls.R2,ls=ls.B; //首坐标
else dj=ls.R1,ls=ls.A; //末坐标
ls[2]=0;
var I2 = new Array( I[0], I[1], I[2] - dj/Math.sqrt(vx*vx+vy*vy)*6.28 ); //也可以不重算计算恒星时,直接用I[2]代替,但线头不会严格落在日出日没食甚线上
this.push( this.bse2db(ls,I2,1), re.L0 );
n4++;
}
if(p[1]!=100) this.push(p,re.L0); //保存中心线
//南北界
this.mQie(M,vx,vy, +1, r, I, re.L1); //半影北界
this.mQie(M,vx,vy, -1, r, I, re.L2); //半影南界
this.mQie(M,vx,vy, +1, B.r2, I, re.L3); //本影北界
this.mQie(M,vx,vy, -1, B.r2, I, re.L4); //本影南界
this.mQie(M,vx,vy, +1, (r+B.r2)/2, I, re.L5); //0.5半影北界
this.mQie(M,vx,vy, -1, (r+B.r2)/2, I, re.L6); //0.5半影南界
}
//日出日没食甚线的线头连接
this.elmCpy(re.q3, 0, re.q1,-1); //连接q1和a3,单边界必须
this.elmCpy(re.q4, 0, re.q2,-1); //连接q2和a4,单边界必须
this.elmCpy(re.q1,-2, re.L1, 0); //半影北界线西端
this.elmCpy(re.q2,-2, re.L2, 0); //半影南界线西端
this.elmCpy(re.q3, 0, re.L1,-1); //半影北界线东端
this.elmCpy(re.q4, 0, re.L2,-1); //半影南界线东端
this.elmCpy(re.q2, 0, re.q1, 0);
this.elmCpy(re.q3,-2, re.q4,-1);
return re;
},
jieX2:function (jd){ //jd力学时
var re=new Object();
var p1=new Array(), p2=new Array(), p3=new Array();
if(abs(jd-this.Zjd)>0.5) return re;
var i,s,p,x,y,X,Y;
var S = this.sun(jd); //此刻太阳赤道坐标
var M = this.bseM(jd); //此刻月亮
var B = this.rSM(M[2]); //本半影等
var I = this.bse(jd); //贝塞尔坐标参数
var Z = M[2]; //月亮的坐标的z量
var a0=M[0]*M[0]+M[1]*M[1];
var a1=a0-B.r2*B.r2;
var a2=a0-B.r1*B.r1;
var N = 200;
for(i=0;i<N;i++){//第0和第N点是同一点,可形成一个环,但不必计算,因为第0点可能在界外而无效
s=i/N*pi2;
var cosS=cos(s), sinS=sin(s);
X = M[0] + cs_k*cosS, Y = M[1] + cs_k*sinS;
//本影
x = M[0] + B.r2*cosS, y = M[1] + B.r2*sinS;
p = lineEar2(X,Y,Z, x,y,0, cs_ba,1,I);
if(p.W!=100) this.push( [p.J,p.W], p1 );
else { if(sqrt(x*x+y*y)>a1) this.push( this.bse2db([x,y,0],I,1), p1 ); }
//半影
x = M[0] + B.r1*cosS, y = M[1] + B.r1*sinS;
p = lineEar2(X,Y,Z, x,y,0, cs_ba,1,I);
if(p.W!=100) this.push( [p.J,p.W], p2 );
else { if(sqrt(x*x+y*y)>a2) this.push( this.bse2db([x,y,0],I,1), p2 ); }
//晨昏圈
p = llrConv([s,0,0],pi_2-S[1]);
p[0] = rad2rrad( p[0]+S[0]+pi_2-I[2] );
this.push(p, p3);
}
p1[p1.length]=p1[0], p1[p1.length]=p1[1];
p2[p2.length]=p2[0], p2[p2.length]=p2[1];
p3[p3.length]=p3[0], p3[p3.length]=p3[1];
re.p1=p1, re.p2=p2, re.p3=p3;
return re;
},
jieX3:function(jd){ //界线表
var i,k, p, ls;
var re=this.feature(jd); //求特征参数
var t = Math.floor(re.jd*1440)/1440 -3/24;
var N=360, dt=1/1440, s='',s2;
for(i=0;i<N;i++,t+=dt){
var vx = re.vx+re.ax*(t-re.jdSuo);
var vy = re.vy+re.ay*(t-re.jdSuo);
var M = this.bseM(t); //此刻月亮贝塞尔坐标(其x和y正是影足)
var B = this.rSM(M[2]); //本半影等
var r = B.r1; //半影半径
var I = this.bse(t); //贝塞尔坐标参数
s2 = JD.JD2str(t+J2000)+' ', k=0;
//南北界
p = this.nanbei(M,vx,vy, +1, r, I); if(p[1]!=100) s2+=rad2str2(p[0])+' '+rad2str2(p[1])+'|', k++; else s2+='-------------------|'; //半影北界
p = this.nanbei(M,vx,vy, +1, B.r2, I); if(p[1]!=100) s2+=rad2str2(p[0])+' '+rad2str2(p[1])+'|', k++; else s2+='-------------------|'; //本影北界
p = this.bseXY2db(M[0],M[1],I,1); if(p[1]!=100) s2+=rad2str2(p[0])+' '+rad2str2(p[1])+'|', k++; else s2+='-------------------|'; //中心线
p = this.nanbei(M,vx,vy, -1, B.r2, I); if(p[1]!=100) s2+=rad2str2(p[0])+' '+rad2str2(p[1])+'|', k++; else s2+='-------------------|'; //本影南界
p = this.nanbei(M,vx,vy, -1, r, I); if(p[1]!=100) s2+=rad2str2(p[0])+' '+rad2str2(p[1])+' ', k++; else s2+='------------------- '; //半影南界
if(k) s+=s2+'<br>';
}
return '<pre>时间(力学时) 半影北界限 本影北界线 中心线 本影南界线 半影南界线,(伪本影南北界应互换)<br>'+s+'</pre>';
}
};
var rsPL={ //日食批量快速计算器
nasa_r:0, //为1表示采用NASA的视径比
sT:new Array(), //地方日食时间表
secXY:function(jd,L,fa,high,re){ //日月xy坐标计算。参数:jd是力学时,站点经纬L,fa,海拔high(千米)
//基本参数计算
var deltat = dt_T(jd); //TD-UT
var zd=nutation2(jd/36525);
var gst= pGST(jd-deltat,deltat) + zd[0]*Math.cos(hcjj(jd/36525) + zd[1]); //真恒星时(不考虑非多项式部分)
var z;
//=======月亮========
z=rsGS.moon(jd); re.mCJ=z[0]; re.mCW=z[1]; re.mR=z[2]; //月亮视赤经,月球赤纬
var mShiJ = rad2rrad(gst + L - z[0]); //得到此刻月亮时角
parallax(z, mShiJ,fa, high); re.mCJ2=z[0], re.mCW2=z[1], re.mR2=z[2]; //修正了视差的赤道坐标
//=======太阳========
z=rsGS.sun(jd); re.sCJ=z[0]; re.sCW=z[1]; re.sR=z[2]; //太阳视赤经,太阳赤纬
var sShiJ = rad2rrad(gst + L - z[0]); //得到此刻太阳时角
parallax(z,sShiJ,fa,high); re.sCJ2=z[0], re.sCW2=z[1], re.sR2=z[2]; //修正了视差的赤道坐标
//=======视半径========
re.mr = cs_sMoon/re.mR2/rad;
re.sr = 959.63/re.sR2/rad*cs_AU;
if(this.nasa_r) re.mr*=cs_sMoon2/cs_sMoon; //0.99925;
//=======日月赤经纬差转为日面中心直角坐标(用于日食)==============
re.x = rad2rrad(re.mCJ2-re.sCJ2) * Math.cos((re.mCW2+re.sCW2)/2);
re.y = re.mCW2-re.sCW2;
re.t = jd;
},
lineT:function(G, v,u, r, n){//已知t1时刻星体位置、速度,求x*x+y*y=r*r时,t的值
var b=G.y*v-G.x*u, A=u*u+v*v, B=u*b, C=b*b-r*r*v*v, D=B*B-A*C;
if(D<0) return 0;
D=Math.sqrt(D); if(!n) D=-D;
return G.t+((-B+D)/A-G.x)/v;
},
secMax:function(jd,L,fa,high){ //日食的食甚计算(jd为近朔的力学时,误差几天不要紧)
var i;
for(i=0;i<5;i++) this.sT[i]=0; //分别是:食甚,初亏,复圆,食既,生光
this.LX=''; //类型
this.sf=0; //食分
this.b1=1; //月日半径比(食甚时刻)
this.dur = 0; //持续时间
this.P1 = this.V1 = 0; //初亏方位,P北点起算,V顶点起算
this.P2 = this.V2 = 0; //复圆方位,P北点起算,V顶点起算
this.sun_s = this.sun_j = 0; //日出日没
rsGS.init(jd,7);
jd=rsGS.Zjd; //食甚初始估值为插值表中心时刻(粗朔)
var G=new Object(), g=new Object();
this.secXY(jd,L,fa,high,G);
jd -= G.x/0.2128; //与食甚的误差在20分钟以内
var u,v,dt=60/86400,dt2;
for(i=0;i<2;i++){
if( this.secXY(jd,L,fa,high,G) =='err') return;
if( this.secXY(jd+dt,L,fa,high,g)=='err') return;
u = (g.y-G.y)/dt;
v = (g.x-G.x)/dt;
dt2 = -(G.y*u+G.x*v)/(u*u+v*v);
jd += dt2; //极值时间
}
//求直线到太阳中心的最小值
var x=G.x+dt2*v, y=G.y+dt2*u, rmin=Math.sqrt(x*x+y*y);
if(rmin<=G.mr+G.sr){ //食计算
this.sT[1] = jd; //食甚
this.LX='偏';
this.sf=(G.mr+G.sr-rmin)/G.sr/2; //食分
this.b1=G.mr/G.sr;
this.sun_s = sunShengJ(jd-dt_T(jd)+L/pi2,L,fa,-1); //日出
this.sun_j = sunShengJ(jd-dt_T(jd)+L/pi2,L,fa, 1); //日没
this.sT[0] = this.lineT(G,v,u, G.mr+G.sr, 0); //初亏
for(i=0;i<3;i++) { //初亏再算3次
this.secXY(this.sT[0],L,fa,high,g);
this.sT[0] = this.lineT(g,v,u, g.mr+g.sr, 0);
}
this.P1 = rad2mrad(atan2(g.x,g.y)); //初亏位置角
this.V1 = rad2mrad(this.P1-shiChaJ(pGST2(this.sT[0]),L,fa,g.sCJ,g.sCW)); //这里g.sCJ与g.sCW对应的时间与sT[0]还差了一点,所以有一小点误差,不采用真恒星时也误差一点
this.sT[2] = this.lineT(G,v,u, G.mr+G.sr, 1); //复圆
for(i=0;i<3;i++) { //复圆再算3次
this.secXY(this.sT[2],L,fa,high,g);
this.sT[2] = this.lineT(g,v,u, g.mr+g.sr, 1);
}
this.P2 = rad2mrad(atan2(g.x,g.y));
this.V2 = rad2mrad(this.P2-shiChaJ(pGST2(this.sT[2]),L,fa,g.sCJ,g.sCW)); //这里g.sCJ与g.sCW对应的时间与sT[2]还差了一点,所以有一小点误差,不采用真恒星时也误差一点
}
if(rmin<=G.mr-G.sr){ //全食计算
this.LX='全';
this.sT[3] = this.lineT(G,v,u, G.mr-G.sr, 0); //食既
this.secXY(this.sT[3],L,fa,high,g);
this.sT[3] = this.lineT(g,v,u, g.mr-g.sr, 0); //食既再算1次
this.sT[4] = this.lineT(G,v,u, G.mr-G.sr, 1); //生光
this.secXY(this.sT[4],L,fa,high,g);
this.sT[4] = this.lineT(g,v,u, g.mr-g.sr, 1); //生光再算1次
this.dur = this.sT[4]-this.sT[3];
}
if(rmin<=G.sr-G.mr){ //环食计算
this.LX='环';
this.sT[3] = this.lineT(G,v,u, G.sr-G.mr, 0); //食既
this.secXY(this.sT[3],L,fa,high,g);
this.sT[3] = this.lineT(g,v,u, g.sr-g.mr, 0); //食既再算1次
this.sT[4] = this.lineT(G,v,u, G.sr-G.mr, 1); //生光
this.secXY(this.sT[4],L,fa,high,g);
this.sT[4] = this.lineT(g,v,u, g.sr-g.mr, 1); //生光再算1次
this.dur = this.sT[4]-this.sT[3];
}
},
//以下涉及南北界计算
A:new Array(), B:new Array(), //本半影锥顶点坐标
P : {S:new Array(), M:new Array(), g:0},//t1时刻的日月坐标,g为恒星时
Q : {S:new Array(), M:new Array(), g:0},//t2时刻的日月坐标
V : new Array(), //食界表
Vc: '', Vb: '', //食中心类型,本影南北距离
zb0:function(jd){
//基本参数计算
var deltat = dt_T(jd); //TD-UT
var E=hcjj(jd/36525);
var zd=nutation2(jd/36525);
this.P.g = pGST(jd-deltat, deltat) + zd[0]*Math.cos(E+zd[1]); //真恒星时(不考虑非多项式部分)
this.P.S=rsGS.sun(jd);
this.P.M=rsGS.moon(jd);
var t2=jd+60/86400;
this.Q.g = pGST(t2-deltat,deltat) + zd[0]*Math.cos(E+zd[1]);
this.Q.S=rsGS.sun(t2);
this.Q.M=rsGS.moon(t2);
//转为直角坐标
var z1=new Array(), z2=new Array();
z1 = llr2xyz(this.P.S);
z2 = llr2xyz(this.P.M);
var k=959.63/cs_sMoon*cs_AU, F; //k为日月半径比
//本影锥顶点坐标计算
F = new Array(
(z1[0]-z2[0])/(1-k)+z2[0],
(z1[1]-z2[1])/(1-k)+z2[1],
(z1[2]-z2[2])/(1-k)+z2[2]);
this.A = xyz2llr(F);
//半影锥顶点坐标计算
F = new Array(
(z1[0]-z2[0])/(1+k)+z2[0],
(z1[1]-z2[1])/(1+k)+z2[1],
(z1[2]-z2[2])/(1+k)+z2[2]);
this.B = xyz2llr(F);
},
zbXY:function(p,L,fa){
var s=new Array(p.S[0],p.S[1],p.S[2]);
var m=new Array(p.M[0],p.M[1],p.M[2]);
parallax(s, p.g+L-p.S[0],fa, 0); //修正了视差的赤道坐标
parallax(m, p.g+L-p.M[0],fa, 0); //修正了视差的赤道坐标
//=======视半径========
p.mr = cs_sMoon/m[2]/rad;
p.sr = 959.63/s[2]/rad*cs_AU;
//=======日月赤经纬差转为日面中心直角坐标(用于日食)==============
p.x = rad2rrad(m[0]-s[0]) * Math.cos((m[1]+s[1])/2);
p.y = m[1]-s[1];
},
p2p:function(L,fa,re,fAB,f){ //f取+-1
var p=this.P, q=this.Q;
this.zbXY(this.P,L,fa);
this.zbXY(this.Q,L,fa);
var u=q.y-p.y, v=q.x-p.x, a=Math.sqrt(u*u+v*v),r=959.63/p.S[2]/rad*cs_AU;
var W=p.S[1]+f*r*v/a, J=p.S[0]-f*r*u/a/Math.cos((W+p.S[1])/2), R=p.S[2];
var A = fAB ? this.A : this.B;
var pp = lineEar( new Array(J,W,R), A, p.g );
re.J = pp.J;
re.W = pp.W;
},
pp0:function(re){ //食中心点计算
var p=this.P;
var pp = lineEar( p.M, p.S, p.g );
re.J = pp.J;
re.W = pp.W; //无解返回值是100
if(re.W==100) { re.c = ''; return; }
re.c='全';
this.zbXY(p,re.J,re.W);
if(p.sr>p.mr) re.c='环';
},
nbj:function(jd){ //南北界计算
rsGS.init(jd,7);
var i, G=new Object(), V=this.V;
for(i=0;i<10;i++) V[i]=100; this.Vc='',this.Vb=''; //返回初始化,纬度值为100表示无解,经度100也是无解,但在以下程序中经度会被转为-PI到+PI
this.zb0(jd);
this.pp0(G); V[0]=G.J, V[1]=G.W, this.Vc=G.c; //食中心
G.J=G.W=0; for(i=0;i<2;i++) this.p2p(G.J,G.W,G,1, 1); V[2]=G.J, V[3]=G.W; //本影北界,环食为南界(本影区之内,变差u,v基本不变,所以计算两次足够)
G.J=G.W=0; for(i=0;i<2;i++) this.p2p(G.J,G.W,G,1,-1); V[4]=G.J, V[5]=G.W; //本影南界,环食为北界
G.J=G.W=0; for(i=0;i<3;i++) this.p2p(G.J,G.W,G,0,-1); V[6]=G.J, V[7]=G.W; //半影北界
G.J=G.W=0; for(i=0;i<3;i++) this.p2p(G.J,G.W,G,0, 1); V[8]=G.J, V[9]=G.W; //半影南界
if(V[3]!=100&&V[5]!=100){ //粗算本影南北距离
var x=(V[2]-V[4])*Math.cos((V[3]+V[5])/2), y=V[3]-V[5];
this.Vb = (cs_rEarA*Math.sqrt(x*x+y*y)).toFixed(0)+'千米';
}
}
};
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。