代码拉取完成,页面将自动刷新
#!/usr/bin/env python3
"""Samples from k-diffusion models."""
import argparse
import math
import accelerate
import torch
from tqdm import trange, tqdm
import k_diffusion as K
def main():
p = argparse.ArgumentParser(description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('--batch-size', type=int, default=64,
help='the batch size')
p.add_argument('--checkpoint', type=str, required=True,
help='the checkpoint to use')
p.add_argument('--config', type=str, required=True,
help='the model config')
p.add_argument('-n', type=int, default=64,
help='the number of images to sample')
p.add_argument('--prefix', type=str, default='out',
help='the output prefix')
p.add_argument('--steps', type=int, default=50,
help='the number of denoising steps')
args = p.parse_args()
config = K.config.load_config(open(args.config))
model_config = config['model']
# TODO: allow non-square input sizes
assert len(model_config['input_size']) == 2 and model_config['input_size'][0] == model_config['input_size'][1]
size = model_config['input_size']
accelerator = accelerate.Accelerator()
device = accelerator.device
print('Using device:', device, flush=True)
inner_model = K.config.make_model(config).eval().requires_grad_(False).to(device)
inner_model.load_state_dict(torch.load(args.checkpoint, map_location='cpu')['model_ema'])
accelerator.print('Parameters:', K.utils.n_params(inner_model))
model = K.Denoiser(inner_model, sigma_data=model_config['sigma_data'])
sigma_min = model_config['sigma_min']
sigma_max = model_config['sigma_max']
@torch.no_grad()
@K.utils.eval_mode(model)
def run():
if accelerator.is_local_main_process:
tqdm.write('Sampling...')
sigmas = K.sampling.get_sigmas_karras(args.steps, sigma_min, sigma_max, rho=7., device=device)
def sample_fn(n):
x = torch.randn([n, model_config['input_channels'], size[0], size[1]], device=device) * sigma_max
x_0 = K.sampling.sample_lms(model, x, sigmas, disable=not accelerator.is_local_main_process)
return x_0
x_0 = K.evaluation.compute_features(accelerator, sample_fn, lambda x: x, args.n, args.batch_size)
if accelerator.is_main_process:
for i, out in enumerate(x_0):
filename = f'{args.prefix}_{i:05}.png'
K.utils.to_pil_image(out).save(filename)
try:
run()
except KeyboardInterrupt:
pass
if __name__ == '__main__':
main()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。