代码拉取完成,页面将自动刷新
#--------------------------------------------#
# 该部分代码用于看网络结构
#--------------------------------------------#
import torch
from thop import clever_format, profile
from torchsummary import summary
from nets.yolo import YoloBody
if __name__ == "__main__":
input_shape = [640, 640]
num_classes = 80
phi = 'l'
# 需要使用device来指定网络在GPU还是CPU运行
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
m = YoloBody(num_classes, phi).to(device)
summary(m, (3, input_shape[0], input_shape[1]))
dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
flops, params = profile(m.to(device), (dummy_input, ), verbose=False)
#--------------------------------------------------------#
# flops * 2是因为profile没有将卷积作为两个operations
# 有些论文将卷积算乘法、加法两个operations。此时乘2
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
# 本代码选择乘2,参考YOLOX。
#--------------------------------------------------------#
flops = flops * 2
flops, params = clever_format([flops, params], "%.3f")
print('Total GFLOPS: %s' % (flops))
print('Total params: %s' % (params))
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。