代码拉取完成,页面将自动刷新
同步操作将从 连享会/实证分析可视化 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
* ---------------------------------------------------
*
* ______________ _________
* / ___/_ __/ |/_ __/ |
* /__ / / / / /| | / / / /| |
* ___/ // / / ___ |/ / / ___ |
* /____//_/ /_/ |_/_/ /_/ |_|
*
*
* ---------------------------------------------------
*
* ====
* 课件:https://gitee.com/arlionn/graph
* ====
*
*
* 主讲人:连玉君
*
* 单 位:中山大学岭南学院金融系
* 电 邮: arlionn@163.com
*
* 主 页: https://www.lianxh.cn (最新推文都在这里, 百度:连享会)
* 知 乎: https://www.zhihu.com/people/arlionn/
* 微 博:http://weibo.com/arlionn
* b 站:https://space.bilibili.com/546535876 (b站搜索:连享会)
* 微 信:lianyj45
* 公众号:连享会 ( ID: lianxh_cn )
* ============================
* :: 实证分析可视化 ::
* ============================
*-注意:执行后续命令之前,请先执行如下几条命令
* =课件放置=:
global FF "D:/" //盘符
global foldName "Lianxh_Graph" // 设置文件夹名称
*-以下都是相对路径,无需修改
cd "$FF"
cap mkdir "$foldName"
cd "$foldName"
cap mkdir fig
cap mkdir data
global path "$FF/$foldName" //课件目录
global data "$path/data"
global fig "$path/fig"
adopath + "$PP/adofiles" //外部命令
cd "$fig" // 工作路径
//-----------------
//安装和设置绘图模板 (若已安装, 可以忽略)
/*
graph query, schemes // 列示电脑中已经安装的图形模板
. set scheme s2color // Stata 默认, 彩色
. set scheme s2mono // Stata 默认, 黑白
net install scheme_scientific.pkg, replace
. set scheme scientific // 黑白图,很不错
ssc install schemepack, replace //white_tableau 模板
. set scheme white_tableau //设定绘图风格为white_tableau,R 图形风格
*/
version 17
/*
== 实证分析可视化 ==
https://gitee.com/arlionn/PX
o 为什要可视化?
o Stata 绘图命令的架构
o 直方图与密度函数图:histogram, kdensity, biplot
o 分仓散点图:binscatter,binscatter2
o 系数及系数差异的可视化呈现:coefplot
o 调节效应、倒 U 型关系及边际效应的可视化
o 面板数据、多个控制变量、高维固定效应模型的可视化
o 长期与短期关系的可视化
o 范文:2 篇
*/
/*
set scheme white_tableau
set scheme tufte
*/
*------------ 执行如下命令可以查看绘图详情 --------------
. ssc install lianxh, replace
. lianxh 绘图
. lianxh 可视化
. lianxh 散点 直方 柱
*----------------------------------------------------------
*------------------
*-3.1 为什要可视化?
*------------------
*~~~~~~~~~
*-Why 01 ?发现数据特征和问题
* Anscombe (1973)
clear
input x y1 y2 y3 x4 y4
10.0 8.04 9.14 7.46 8.0 6.58
8.0 6.95 8.14 6.77 8.0 5.76
13.0 7.58 8.74 12.74 8.0 7.71
9.0 8.81 8.77 7.11 8.0 8.84
11.0 8.33 9.26 7.81 8.0 8.47
14.0 9.96 8.10 8.84 8.0 7.04
6.0 7.24 6.13 6.08 8.0 5.25
4.0 4.26 3.10 5.39 19.0 12.50
12.0 10.84 9.13 8.15 8.0 5.56
7.0 4.82 7.26 6.42 8.0 7.91
5.0 5.68 4.74 5.73 8.0 6.89
end
label data "Anscombe (1973), The American Statistician, 27(1): 17-21, Table 1"
save "$data/Anscombe1973", replace
global opt "legend(off) lc(green*2)"
tw scatter y1 x || lfit y1 x , $opt xtitle("Fig 1")
graph save "Anscombe1973_1_temp.gph", replace
tw scatter y2 x || lfit y2 x , $opt xtitle("Fig 2")
graph save "Anscombe1973_2_temp.gph", replace
tw scatter y3 x || lfit y3 x , $opt xtitle("Fig 3")
graph save "Anscombe1973_3_temp.gph", replace
tw scatter y4 x4 || lfit y4 x4, $opt xtitle("Fig 4")
graph save "Anscombe1973_4_temp.gph", replace
*-combine
graph combine "Anscombe1973_1_temp.gph" "Anscombe1973_2_temp.gph" ///
"Anscombe1973_3_temp.gph" "Anscombe1973_4_temp.gph", xcommon ycommon
graph export "$fig/Anscombe1973_Figs.png", replace width(1200)
*~~~~~~~~~
*-Why 02 ?模拟分析,理解计量理论
*---------
*-例1: OLS 估计的无偏性
* 从 population 中随机抽样,虽然每次的估计结果有真实值都有差异,
* 但如果做 K=1000 次,他们的均值应该非常接近真实值
*
* E[b_ols] = b_0
*
* 1. MC 生成 N=100000 的样本,视为 population
* 2. 随机抽取 n=50 的子样本, 视为 sample,计算 b 和 se
* 3. 把第二步重复做 K=1000 次,系数记为 b_j, 计算 Mean(b_j), 并于 b0 对比
*
* 预期: Mean(b_j) = b_0
clear
set seed 1357
set obs 100000
gen x = rnormal(0,1)
gen y = 10 + 0.5*x + rnormal()
gen b = .
gen b_se = .
local n = 50 // 每次抽样的样本数
global K = 1000 // 模拟次数
gen id = _n in 1/$K // 样本序号
forvalues j =1/$K {
preserve
qui sample `n', count
qui reg y x
restore
qui replace b = _b[x] in `j'
qui replace b_se = _se[x] in `j'
dis "." _c
}
*-图示系数估计值
kdensity b, xline(0.5, lp(dash) lc(red) noextend)
graph export "OLS_unbias_b_density.png", width(1200) replace
scatter b id
*----------详细版本----------------begin------
sum b, detail
local b_U_CI90 = r(p95) // 90% CI 下限
local b_L_CI90 = r(p5) // 90% CI 上限
scatter b id, ///
mcolor(black*0.4%80) msize(*0.6) ///
yline(0.5, lp(dash) lc(red) noextend) ///
yline(`b_U_CI90' `b_L_CI90', lc(blue) lw(*1.5)) ///
ylabel(0.1(0.2)0.9, format(%2.1f))
*-----------------------------------over-------
graph export "OLS_unbias_b.png", width(1200) replace
*-图示标准误
kdensity b_se
*-图示 t 值
cap drop t
gen t = b/b_se
kdensity t, xline(1.96, lp(dash) lc(red) ///
noextend) normal ///
legend(order(1 "b_j den" 2 "Normal den") ring(0) pos(3)) ///
title(" ")
graph export "OLS_t_value_kden.png", width(1200) replace
count if (t>1.96)&(t!=.)
dis "reject-ratio = " 1-r(N)/$K // should be 0.05
*-Q:
*
* [1] 把 local n=100 改为 30, 500 等数值,b 和 se 的结果有何变化?
*
* [2] n=50 时, t-value 服从正态分布吗? n=10000 呢?
*---------
*-例2: OLS 估计的一致性
* 随着样本数的增大,OLS 估计值趋向于真实值,方差趋近于 0
* 1. MC 生成 N=100000 的样本,视为 population
* 2. 随机抽取 n=10,20,...1000, 1100,...,30000 的子样本,计算 b 和 se
* 3. 绘图
clear
set seed 13579
set obs 100000
gen x = rnormal(0,1)
gen y = 10 + 0.5*x + rnormal()
local j = 1
gen n = .
gen b = .
gen b_se = .
foreach i of numlist 10(10)1000 1100(100)30000{
preserve
qui sample `i', count
qui reg y x
restore
qui replace n = e(N) in `j'
qui replace b = _b[x] in `j'
qui replace b_se = _se[x] in `j++'
dis "." _c
}
*-图示系数估计值
line b n , xscale(log) xlabel(10 50 100 500 1000 5000 10000 50000)
*-图示标准误
line b_se n , xscale(log) xlabel(10 50 100 500 1000 5000 10000 50000)
*-图示系数估计值+标准误
tw (line b n) (line b_se n), ///
yline(0.5, lp(dash)) ylabel(0(0.1)0.8) ///
xscale(log) xlabel(10 50 100 400 1000 5000 30000) ///
legend(ring(0) pos(2)) ///
scheme(tufte)
graph export "OLS_consis_b_se.png", replace
*~~~~~~~~~
*-Why 03 ? 做有灵魂的图形
*------------------
*-例 3: 何谓 Fixed Effect?
*-产生模拟数据
local het = 0
if `het'!=1{ // b1=b2=b3
local b1 = 0.4
local b2 = 0.4
local b3 = 0.4
local title "homo"
}
else{ // beta_j
local b1 = 0.4
local b2 = `b1'+0.2
local b3 = `b1'+0.4
local title "het"
}
clear
set obs 60
set seed 13599
egen id= seq(), from(1) to(3) block(20)
bysort id : gen t = _n + 1990
gen x1 = 3*rnormal()
gen e = 1*rnormal()
gen y = .
gen x = x1 + 0
replace x = x1 + 4 if 1.id
replace x = x1 - 5 if 3.id
replace y = 6 + `b1'*x + e if id==1
replace y = 10 + `b2'*x + e if id==2
replace y = 15 + `b3'*x + e if id==3
bysort id: center y x, prefix(c_) // De-mean
save "$data/sim_panel_`het'", replace
*-绘图 1:手动处理
#delimit ;
twoway (scatter y x if id==1, mcolor(green) msymbol(+))
(scatter y x if id==2, mc(red) ms(oh))
(scatter y x if id==3, mc(blue) ms(dh))
(lfit y x, lcolor(black) lw(*1.5) lp(dash))
(lfit y x if id==1, lc(gray) lw(*1))
(lfit y x if id==2, lc(gray) lw(*1))
(lfit y x if id==3, lc(gray) lw(*1))
(scatter c_y c_x if id==1, mcolor(green) msymbol(+))
(scatter c_y c_x if id==2, mc(red) ms(oh))
(scatter c_y c_x if id==3, mc(blue) ms(dh))
(lfit c_y c_x,lcolor(black) lw(*1.8) lp(dash))
(lfit c_y c_x if id==1, lc(gray) lw(*1))
(lfit c_y c_x if id==2, lc(gray) lw(*1))
(lfit c_y c_x if id==3, lc(gray) lw(*1))
,
yline(5, lp(longdash) lc(blue*1.5%30))
ylabel(,angle(0))
text(15.5 9.4 "Raw") text( 4 8.8 "De-mean")
legend(off) aspect(0.8) ;
#delimit cr
graph export "FWL_demean_`title'.png", replace width(1200)
*-绘图 2:使用 binscatter
*use "$data/sim_panel_1.dta", clear
/*
set scheme white_tableau
*/
binscatter y x, by(id) // Raw
binscatter y x, by(id) control(i.id) // De-mean
*-合图/美化
binscatter y x, by(id) ///
aspect(0.9) legend(off) ///
savegraph(sim_FE_raw.gph) replace
binscatter y x, by(id) control(i.id) noaddmean ///
aspect(0.9) legend(off) ///
savegraph(sim_FE_demean.gph) replace
graph combine sim_FE_raw.gph sim_FE_demean.gph, ///
col(2) imargin(small)
graph export "sim_FE_demean_binscatter.png", width(1200) replace
*========================
*-3.2 Stata 绘图命令概览
*========================
*----------------------------
*-3.2.1 二维图命令的基本结构
*-整体架构
* twoway (单元图1) (单元图2) (...) , 选项1 选项2 ...
* twoway 单元图1 || 单元图2 || ... , 选项1 选项2 ...
*-单元图的定义
* (单元图类型 y1 y2 ... x , 选项1 选项2 ...)
* e.g.
* (scatter price weight, msize(small) msymbol(oh))
*-二维图选项的定义
* 二维图选项标题 (定义内容 , 子选项 子选项 ...)
*-图形的整体风格:由 scheme 来控制
/*
help scheme
graph query, schemes // 已安装的图形模板
findit scheme
set scheme s1mono // Stata 官方模板, 黑白
set scheme scientific // 用户模板, 黑白
set scheme white_tableau // 用户模板, 彩色
*/
*-图形输出和保存
* graph save xxx.gph, replace // Stata 格式 .gph,便于后续 combine
* graph export xxx.png, replace // .png 格式,便于插入 word, md, LaTeX
*---------
*-示例-G1:第一幅图
sysuse "auto.dta", clear
set scheme s1mono
#d ;
twoway
(scatter mpg weight, msize(small) msymbol(oh))
(lfit mpg weight, lcolor(blue)
lwidth(*1.3)
lpattern(dash))
,
title("My first Stata graph")
note("www.lianxh.cn") ;
graph export "graph_fig001.png",
width(800) replace ;
#d cr
*-Note: #d; 用于声明后续命令使用「;」作为换行符,而非默认的回车键换行
/*
help delimit
*/
*---------
*-示例-G2
sysuse "sp500", clear
replace volume = volume/1000
keep in 1/57
*----------------------------------------Begin
#delimit ;
twoway //help twoway
(rspike hi low date, lw(*1.3))
(line close date,
lpattern(solid) lwidth(*1.2) lcolor(blue))
,
yscale(range(1100 1400)) //help axis_options
ylabel(1100(100)1400, grid) //help axis_options
ymtick(##5) //help axis_options
xlabel(, angle(30)) //help axis_options
ytitle("股价", place(top)) //help title_options
subtitle("S&P 500", margin(b+2.5)) //help title_options
//help graph text
xtitle("交易日") //help title_options
legend(order(1 "High-Low" 2 "Close")
ring(0) position(2) row(2)) //help legend_options
note("数据来源: 雅虎财经!") //help title_options
scheme(s2mono); //help scheme
#delimit cr
*----------------------------------------Over
/* 酌情选用
ssc install schemepack, replace // 安装模板
set scheme white_tableau // 指定模板
set scheme scientific // 适于投稿
*/
*---------
*-示例-G3
sysuse "sp500", clear
replace volume = volume/1000
*----------------------------------------Begin
#delimit ;
twoway
(rspike hi low date)
(line close date)
(bar volume date, barw(.25) yaxis(2))
in 1/57
,
yscale(axis(1) r(900 1400))
yscale(axis(2) r( 9 45))
ylabel(, axis(2) grid)
ytitle("股价: 最高, 最低, 收盘",place(top))
ytitle("交易量 (百万股)", axis(2)
bexpand just(left))
xtitle(" ")
legend(off)
subtitle("S&P 500", margin(b+2.5))
note("数据来源: 雅虎财经!") ;
#delimit cr
*----------------------------------------Over
graph export "sp500_rspike.png", replace
*----------------
*-3.2.2 绘图模板
/*
help scheme
graph query, schemes // 已安装的图形模板
* 手动设置:编辑(E) → 首选项(P) → 图形首选项(G) → 【方案】下拉菜单
findit scheme //搜索新模板
*/
sysuse "auto.dta", clear
set scheme s1mono
scatter price mpg, by(foreign)
set scheme tufte
scatter price mpg, by(foreign)
set scheme white_tableau
scatter price mpg, by(foreign)
set scheme scientific
scatter price mpg, by(foreign)
scatter price mpg, by(foreign) scheme(s2color)
*-自定制模板
. lianxh 模板 + 图 // 执行该命令,查看推文
* Stata:图形美颜-自定义绘图模板-grstyle-palettes:
view browse "https://www.lianxh.cn/news/8c1819ff61a8a.html"
help grstyle // Benn, J, SJ 18(3):491--502;SJ 18(4):786–802
view browse "https://www.stata-journal.com/article.html?article=gr0073"
view browse "https://www.stata-journal.com/article.html?article=gr0073_1"
*-安装
ssc install grstyle, replace
ssc install palettes, replace
*-范例
set scheme scientific
grstyle init
grstyle set plain, horizontal grid
scatter price mpg, by(foreign)
*===================================
*-3.3 直方图、分布函数和密度函数图
*===================================
*--------------
*-3.3.1 直方图
help histogram
*-概览
sysuse nlsw88.dta, clear
histogram wage
gen ln_wage = ln(wage)
histogram ln_wage // 对数转换后往往更符合正态分布
*-图形的纵坐标
histogram wage // 长条的高度对应样本数占总样本的比例,
// 总面积为 1
histogram wage, fraction // 将长条的高度总和限制为 1
histogram wage, frequency // 纵坐标为对应的样本数,而非比例
*-其他选项
sysuse nlsw88.dta, clear
histogram ttl_exp, normal // 附加正态分布曲线
histogram wage, kdensity // 附加密度函数曲线
histogram wage, addlabels // 每个长条上方附加一个表示其高度的数字
histogram wage, by(race) // 分组绘制
*-离散变量的直方图
histogram grade
histogram grade, discrete // 离散变量的直方图必须附加 discrete 选项
*-长条的显示-长条的横向间距
histogram wage, gap(50)
histogram wage, gap(90) scheme(s1mono)
histogram wage, gap(99.9) scheme(s1mono) blwidth(thick)
*-分组绘制直方图
sysuse "auto.dta", clear
histogram mpg, percent discrete ///
by(foreign, col(1) note(分组指标:汽车产地) ///
title("图3:不同产地汽车油耗") ///
subtitle("auto.dta") ) ///
ytitle(百分比) xtitle(每加仑英里数)
*------------------
*-3.3.2 密度函数图
*-Kernal 密度函数图
help kdensity
sysuse "nlsw88.dta", clear
kdensity wage
kdensity wage, normal
*-比较不同子样本的密度函数
sysuse "nlsw88.dta", clear
gen lnwage = ln(wage)
twoway (kdensity lnwage if 1.race) ///
(kdensity lnwage if 2.race) ///
(kdensity lnwage if race!=3), ///
legend(order (1 "White" 2 "Black" 3 "All") ///
ring(0) pos(3) col(1))
graph export "$fig/Fig-visual-mkdensity-01.png", replace
*-使用 mkdensity 命令 (便于测试)
sysuse "nlsw88.dta", clear
gen lnwage = ln(wage)
global y "ttl_exp"
global y "wage"
global y "lnwage"
global gg "union"
global gg "race"
global gg "collgrad"
mkdensity $y, over($gg)
*-附加置信区间 -akdensity- 外部命令 SJ 3(2):148--156
help akdensity
sysuse "nlsw88.dta", clear
gen lnwage = ln(wage)
akdensity lnwage, stdbands(2)
*-多变量密度函数图合图
help multidensity
sysuse "auto.dta", clear
multidensity clear
multidensity gen price weight mpg length
multidensity juxta, combineopts(name(G7, replace))
multidensity bystyle
*----------------------
*-3.3.3 累积分布函数图
help cumul
help distplot
help cdfplot
*-基本概念
/*
webuse hsng, clear
save "$D/hsng.dta", replace
*/
use "$D/hsng.dta", clear
cumul faminc, gen(cum)
sort faminc
list faminc cum, clean
list faminc cum if _n<5 | _n>46, clean
/*
faminc cum
1. 14591.00 .02
2. 14641.00 .04
3. 15993.00 .06
4. 16167.00 .08
... ...
47. 22906.00 .94
48. 23112.00 .96
49. 23149.00 .98
50. 28395.00 1
*/
line cum faminc, sort
*-对比:South v.s. other
cap drop cum_south cum_other
cumul faminc if region==3, gen(cum_south)
cumul faminc if region!=3, gen(cum_other)
*-累积分布图
tw (line cum_south faminc) ///
(line cum_other faminc), ///
legend(order (1 "South" 2 "Other") ring(0) pos(3) col(1))
*-密度函数图
tw (kdensity faminc if region==3) ///
(kdensity faminc if region!=3), ///
legend(order (1 "South" 2 "Other") ring(0) pos(3) col(1))
*--------
*--displot- (外部命令)更为简洁
help distplot
/*
webuse hsng, clear
*/
use "$D/hsng.dta", clear
distplot scatter faminc
gen south = 3.region
distplot line faminc, by(south)
distplot connected faminc, trscale(ln(@)) //对数转换
*-支持的图形种类
* area bar connected dot dropline line scatter spike
foreach t in area bar connected dot dropline line scatter spike {
distplot `t' faminc, by(south)
}
*--------
*-cdfplot- 命令
help cdfplot
webuse hsng, clear
gen south = 3.region
cdfplot faminc, normal
cdfplot faminc, by(south)
cdfplot faminc, by(south) norm
*-示例:对数转换的作用
sysuse "nlsw88.dta", clear
cdfplot wage, normal
gen ln_wage = ln(wage)
cdfplot ln_wage, normal
*-Furthur reading:
* Cox, N., 2004,
* Speaking stata: Graphing distributions,
* STATA JOURNAL, 4(1): 66-88.
view browse "https://journals.sagepub.com/doi/pdf/10.1177/1536867X0100400106"
* Cox, N., 2004,
* Speaking Stata: Graphing categorical and compositional data,
* STATA JOURNAL, 4(1): 190-215.
view browse "https://journals.sagepub.com/doi/pdf/10.1177/1536867X0400400209"
*------------------
*-3.4 散点图
*------------------
help scatter
help multiline
help binscatter
help binscatter2
help superscatter
help binscatterhist
help crossplot
*---------------
*-3.4.1 基本用法
*-原始数据的散点图
sysuse "auto.dta", clear
twoway scatter mpg weight
sc mpg weight // 简写
*-散点图矩阵
help graph matrix
sysuse "auto.dta", clear
local cx "weight length turn foreign"
graph matrix mpg `cx', scheme(tufte)
*-使用 multiline 命令
sysuse "auto.dta", clear
multiline mpg weight length displacement price, ///
recast(scatter) c(none) by(col(2)) ms(Oh) ///
subtitle(, orient(vertical))
multiline mpg weight length displacement price, ///
recast(scatter) c(none) by(col(2)) ms(Oh) ///
subtitle(, orient(vertical)) ///
sepby(foreign) ms(Oh +)
*- f(y) v.s. x
help crossplot
sysuse "auto.dta", clear
gen rt_mpg = sqrt(mpg)
gen ln_mpg = ln(mpg)
gen rec_mpg = 100/mpg
crossplot (mpg rt_mpg ln_mpg rec_mpg) weight, combine(imargin(small))
sysuse "nlsw88.dta", clear
gen lnwage = ln(wage)
crossplot (wage lnwage) (hours ttl_exp), combine(imargin(small))
*----------------------
*-3.4.2 分组均值散点图
sysuse "nlsw88.dta", clear
scatter wage hours // 看得出规律 ?
*-分组均值
global gg "industry" // 行业
global gg "occupation" // 职业
bysort $gg: egen mean_wage = mean(wage)
bysort $gg: egen mean_hours = mean(hours)
bysort $gg: egen num = count(id)
*-行业均值散点图
scatter mean_wage mean_hours
*-设定权重
scatter mean_wage mean_hours [aw=num]
*-添加标签
*-----------------------------------------Begin-----------
scatter mean_wage mean_hours [aw=num]
addplot: scatter mean_wage mean_hours [aw=num], ///
mlabel($gg) mlabcolor(black) mlabposition(12) ///
msize(*0.2) mcolor(white) ///
legend(off)
*-----------------------------------------Over------------
*-Notes:
* 1. 有没有离群值/特殊值 ?
* 2. 如何进一步美化 ?
/*
help scatter
options Description
--------------------------------------------------------------------
marker_options change look of markers (color, size, etc.)
marker_label_options add marker labels; change look or position
connect_options change look of lines or connecting method
composite_style_option overall style of the plot
jitter_options jitter marker positions using random noise
axis_choice_options associate plot with alternate axis
twoway_options titles, legends, axes, added lines and text,
by, regions, name, aspect ratio, etc.
--------------------------------------------------------------------
*/
*------------------
*-3.4.4 分仓散点图
*-基本原理: E[ y | X=x, Controls ]
*
* 基础: FWL 定理 (详见讲义和 Slides)
webuse "nlswork.dta", clear
gen wage = exp(ln_wage)
binscatter wage year, by(union) // left
binscatter wage year, by(union) absorb(union) // middle
binscatter wage year, by(union) absorb(union) /// // right
controls(i.race msp collgrad ttl_exp hours) msymbols(+ oh)
*---------------------------
*-3.4.5 分仓散点图 + 直方图
help binscatterhist
sysuse "nlsw88.dta", clear
gen lnwage = ln(wage)
global yx "wage tenure"
binscatterhist $yx, histogram($yx)
binscatterhist $yx, histogram($yx) linetype(qfit)
global yx "lnwage tenure"
binscatterhist $yx, histogram($yx) ymin(2.3)
binscatterhist $yx, histogram($yx) ymin(2.3) linetype(qfit)
graph export "$fig/binscatterhist_eg2.png", replace
global yx "lnwage tenure"
global cx "i.race i.industry ttl_exp collgrad"
binscatterhist $yx, histogram($yx) controls($cx) n(100)
reg $yx $cx
esttab, nogap
*-更多实例
doedit "$do/binscatterhist_example.do"
*--------------------------
*-3.5 系数差异的可视化呈现:coefplot
*--------------------------
. sysuse "nlsw88.dta", clear
. gen agesq = age*age
*-分组虚拟变量
. drop if race==3
. gen black = 2.race
. tab black
*-删除缺漏值
. global xx "ttl_exp married south hours tenure age* i.industry"
. reg wage $xx i.race
. keep if e(sample)
*-分组回归
. global xx "ttl_exp married south hours tenure age* i.industry"
. reg wage $xx if black==0
. est store White
. reg wage $xx if black==1
. est store Black
*-结果对比
. local m "White Black"
. esttab `m', mtitle(`m') b(%6.3f) nogap drop(*.industry) ///
s(N r2_a) star(* 0.1 ** 0.05 *** 0.01)
Table1: 白人组和黑人组工资影响因素差异对比
------------Table 1-------------------
(1) (2)
White Black
--------------------------------------
ttl_exp 0.251*** 0.269***
(6.47) (4.77)
married -0.737** 0.091
(-2.31) (0.23)
... (output ommited) ...
--------------------------------------
N 1615.000 572.000
r2_a 0.112 0.165
--------------------------------------
t statistics in parentheses
* p<0.1, ** p<0.05, *** p<0.01
----------------------------------------
White Black
----------------------------------------
ttl_exp
---------
beta 0.251*** 0.269***
95% CI [0.17, 0.33] [0.16, 0.38]
----------------------------------------
married
---------
beta -0.737** 0.091
95% CI [-1.36, -0.11] [-0.69, 0.87]
----------------------------------------
. global xline "xline(0,lp(dash) lc(red*0.5))"
. coefplot White Black, keep(ttl_exp married) ///
nolabels $xline ciopt(recast(rcap))
. graph export "Fig01.png", replace
*-Also see: multicoefplot
*------------------------
*-图形呈现系数和置信区间
*-Jann, B. "Plotting Regression Coefficients and Other Estimates".
* STATA JOURNAL, 2014, 14(4):708-737.
shellout "$R\Jann_2014_coefplot.pdf"
help coefplot
sysuse "auto.dta", clear
regress price mpg headroom trunk length turn
coefplot, drop(_cons) xline(0)
regress price mpg headroom trunk length turn if foreign==0
estimates store domestic
regress price mpg headroom trunk length turn if foreign==1
estimates store foreign
coefplot domestic foreign, drop(_cons) xline(0)
*-详情参见:连享会 推文
*-Stata可视化:让他看懂我的结果!
view browse "https://www.lianxh.cn/news/01607de7be5e8.html"
*------------------------------------
*- 附:A3_graph 绘图模板 - 外部模板
*------------------------------------
*-----------------------------------------Begin-----------
cap program drop myDraw
program define myDraw
version 17
args figName schemeName
twoway (function y1=cos(x),range(0 10)) ///
(function y2=sin(x),range(0 10)) ///
(function y3=x^(1/3),range(0 10)), ///
title("scheme `schemeName' ") ///
legend(rows(1)) ///
saving("`figName'",replace) ///
nodraw
end
*-----------------------------------------Over------------
*-Notes:
* 1. 选中,按快捷键 Ctrl+R,读入内存
* 2. 调用:
myDraw b1 lean1
cap graph drop "b1" "b2" "b3" "b4" "b5" "b6"
local sch "lean1"
set scheme `sch'
myDraw b1 `sch'
local sch "white_tableau"
set scheme `sch'
myDraw b2 `sch'
local sch "scientific"
set scheme `sch'
myDraw b3 `sch'
local sch "tufte"
set scheme `sch'
myDraw b4 `sch'
local sch "rbn1mono"
set scheme `sch'
myDraw b5 `sch'
local sch "cleanplots"
set scheme `sch'
myDraw b6 `sch'
graph combine "b1" "b2" "b3" ///
"b4" "b5" "b6", ///
rows(3) saving(gr_scheme2)
graph export "gr_scheme2.png", width(1200) replace
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。