代码拉取完成,页面将自动刷新
import numpy as np
import os.path as osp
from setuptools import setup, find_packages
def readme():
with open('README.md') as f:
content = f.read()
return content
def find_version():
version_file = 'dassl/__init__.py'
with open(version_file, 'r') as f:
exec(compile(f.read(), version_file, 'exec'))
return locals()['__version__']
def numpy_include():
try:
numpy_include = np.get_include()
except AttributeError:
numpy_include = np.get_numpy_include()
return numpy_include
def get_requirements(filename='requirements.txt'):
here = osp.dirname(osp.realpath(__file__))
with open(osp.join(here, filename), 'r') as f:
requires = [line.replace('\n', '') for line in f.readlines()]
return requires
setup(
name='dassl',
version=find_version(),
description='Dassl: Domain adaptation and semi-supervised learning',
author='Kaiyang Zhou',
license='MIT',
long_description=readme(),
url='https://github.com/KaiyangZhou/Dassl.pytorch',
packages=find_packages(),
install_requires=get_requirements(),
keywords=[
'Domain Adaptation', 'Domain Generalization',
'Semi-Supervised Learning', 'Pytorch'
]
)
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。