同步操作将从 hewei/myia 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their gradients. The main application Myia aims to support is research in artificial intelligence, in particular deep learning algorithms.
If you want to play with the current implementation, you can check out ALPHA.md
A short document explaining some of Myia's inner workings is available here
Myia is currently under development and is not yet ready for use. We are optimistic about having an alpha version to play with around the start of 2020.
See Roadmap.
Development in artificial intelligence has been undergoing a boom in the past decade, chiefly due to the success of deep neural networks. The training of a neural network is a sort of differentiable program: one writes a program to compute the output and a cost, and then one computes the derivative of that cost with respect to the model's parameters to determine how they should be updated.
Differentiation can be automated, but mainstream programming languages offer no support for this, hence the need for libraries or programming languages that can reliably support these applications.
The current leading solutions for deep learning fall in two camps:
Computation graph-based solutions such as TensorFlow, Theano and MXNet support automatic differentiation and are very well optimized, but they are not fully general, with only limited support for loops and none for general recursion. Thus models like recursive neural networks are tricky and awkward to write.
Operator overloading solutions such as PyTorch or Autograd use a dynamic approach to automatic differentiation which makes them much more general, but they are tightly coupled to the Python language and cannot reap the benefits of an optimizing compiler. They also involve a certain quantity of overhead per operation which discourages composing small cheap operations.
Myia's solution is to define a strongly-typed, general-purpose intermediate representation with an IR-level automatic differentiation transformation, which can then be compiled and optimized for various targets, thereby getting the best of both leading approaches.
def
, if
, for
, while
, operators, function calls, class
and methods (limited support).break/continue
.yield
and await
If you use Myia for a scientific paper, please cite the above paper or mention Myia in the acknowledgements. It would be great if you could also let us know about it.
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。