1 Star 0 Fork 14

Leechipang/ftbt

forked from tfcolin/ftbt 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
ai.go 11.64 KB
一键复制 编辑 原始数据 按行查看 历史
Colin Teng (滕飞) 提交于 2023-07-20 15:14 . initial commit
package ftbt
import (
"fmt"
"io"
"gitee.com/tfcolin/dsg"
)
var (
AI_MAX_MOVE_DIST int
AI_MAX_MOVE_SCORE int
AI_MAX_BUF_VALUE int
AI_MAX_BUF_SCORE int
AI_MAX_DEF_DIST int
AI_MAX_DEF_SCORE int
AI_MAX_TECH_DIST int
AI_MAX_TECH_SCORE int
AI_MAX_TECH_BUF_VMD int
AI_MAX_TECH_FLY_VMD int
AI_MAX_TECH_DL_VMD int
)
/* 用于保存距离的工作空间 */
var (
w_map []int
ai_people []AIPeople
)
type AIPeople struct {
goal int
move_dist []int
goal_dist []int
/* 可移动目标 */
move_loc []int
/* 各项技术的允许目标 [it (in people)][]
* TC_PEOPLE: 为 people 的索引
* 其他类型: 为 gmap 的索引
*/
tech_loc [][]int
/* 最优决策目标 */
opt_move_loc int
opt_itech int
opt_tech_obj int
tech_people_score_ []int
tech_loc_score_ []int
tech_people_score [][]int
tech_loc_score [][]int
/* 决策因子 */
fact_att, fact_def, fact_move int
}
func LoadAIBase (fin io.Reader) bool {
var n int
n, _ = fmt.Fscan (fin, & AI_MAX_MOVE_DIST )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_MOVE_SCORE )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_BUF_VALUE )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_BUF_SCORE )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_DEF_DIST )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_DEF_SCORE )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_TECH_DIST )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_TECH_SCORE )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_TECH_BUF_VMD )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_TECH_FLY_VMD )
if n != 1 { return true }
n, _ = fmt.Fscan (fin, & AI_MAX_TECH_DL_VMD )
if n != 1 { return true }
return false
}
func InitAI () {
msize := MAP_SIZE[0] * MAP_SIZE[1]
w_map = make ([]int, msize)
ai_people = make ([]AIPeople, len(people))
for i, p := range people {
aip := &ai_people[i]
aip.move_loc = make ([]int ,0)
aip.tech_loc = make ([][]int, len(p.tech))
aip.goal = -1
aip.move_dist = make ([]int, msize)
aip.goal_dist = make ([]int, msize)
aip.opt_move_loc = -1
aip.opt_tech_obj = -1
aip.tech_people_score_ = make ([]int, len(p.tech) * len(people))
aip.tech_loc_score_ = make ([]int, len(p.tech) * msize)
aip.tech_people_score = dsg.IndexIArray2D (aip.tech_people_score_, []int{len(p.tech), len(people)})
aip.tech_loc_score = dsg.IndexIArray2D (aip.tech_loc_score_, []int{len(p.tech), msize})
aip.fact_att = 30
aip.fact_def = 30
aip.fact_move = 40
}
for i := 0; i < msize; i ++ {
w_map[i] = dx_weight[gmap[i].dx]
}
}
func LoadAI (ftech, fmap io.Reader) bool {
if (LoadAIBase (ftech)) {
return true
}
if (LoadAIPeople (fmap)) {
return true
}
return false
}
func LoadAIPeople (fin io.Reader) bool {
var n int
var goal, goal_x, goal_y, att, def, mov int
for i, p := range people {
n, _ = fmt.Fscan (fin, &att, &def, &mov)
if n != 3 {return true}
n, _ = fmt.Fscan (fin, &goal_x, &goal_y)
if n != 2 {return true}
if goal_x >= 0 && goal_y >= 0 {
goal = XY2Loc (goal_x, goal_y)
} else {
goal = -1
}
if p.opt == 0 {
goal, att, def, mov = -1, -1, -1, -1
}
if p.opt == 1 && att == -1 {
att, def, mov = 30, 30, 40
}
AISetArg (i, goal, att, def, mov)
}
return false
}
func AISetArg (ip int, goal int, fact_att, fact_def, fact_move int) {
aip := &ai_people[ip]
aip.goal = goal
aip.fact_att = fact_att
if aip.fact_att == -1 {
aip.fact_def = -1
aip.fact_move = -1
} else {
aip.fact_def = fact_def
aip.fact_move = fact_move
}
}
/* called for all people */
func AICalAllDist () {
for i, p := range people {
aip := &ai_people[i]
if p.loc == -1 {
continue
}
CalDist (p.loc, w_map, aip.move_dist)
if aip.fact_att == -1 {
continue
}
if aip.goal != -1 {
CalDist (aip.goal, w_map, aip.goal_dist)
}
}
}
func AICalTechObjs (ip int, move_loc []int) {
aip := &ai_people[ip]
if aip.fact_att == -1 {
return
}
aip.move_loc = move_loc
p := people[ip]
pset := dsg.InitSet (len(people))
mset := dsg.InitSet (MAP_SIZE[0] * MAP_SIZE[1])
for i, itech := range p.tech {
pset.Empty()
mset.Empty()
aip.tech_loc[i] = make ([]int, 0)
for _, cloc := range aip.move_loc {
x, y := Loc2XY (cloc)
tech := gtech[itech]
for _, dp := range tech.rel_range {
loc := loc_plus (x, y, dp)
if loc == -1 { continue }
if !tech.dx[gmap[loc].dx] { continue }
if tech.class == TC_PEOPLE {
ip_obj := gmap[loc].people
if ip_obj != -1 && people[ip_obj].opt != p.opt {
if !tech.is_long || !gmap[loc].disable_long[people[ip_obj].opt] {
if !pset.GetLabel (ip_obj) {
aip.tech_loc[i] = append (aip.tech_loc[i], ip_obj)
pset.SetLabel (ip_obj, true)
}
}
}
} else {
if !mset.GetLabel (loc) {
aip.tech_loc[i] = append (aip.tech_loc[i], loc)
mset.SetLabel (loc, true)
}
}
}
}
}
}
/* called for only AI People */
func AIMakeDecision (ip int, move_loc []int) {
aip := &ai_people[ip]
p := people[ip]
if p.loc == -1 || aip.fact_att == -1 { return }
AICalTechObjs (ip, move_loc)
loc_score := make ([]int, len(aip.move_loc))
def_score := make ([]int, len(aip.move_loc))
att_score := make ([]int, len(aip.move_loc))
att_tech := make ([]int, len(aip.move_loc))
att_tech_loc := make ([]int, len(aip.move_loc))
if aip.goal == -1 {
ip_min_d := -1
min_d := 0
for irp, rp := range people {
if p.opt != rp.opt && rp.loc != -1 {
if ip_min_d == -1 || aip.move_dist[rp.loc] < min_d {
min_d = aip.move_dist[rp.loc]
ip_min_d = irp
}
}
}
if ip_min_d == -1 {
panic ("no enermy for AI")
}
CalDist (people[ip_min_d].loc, w_map, aip.goal_dist)
}
nrp := 0
for irp, rp := range people {
airp := ai_people[irp]
if p.opt != rp.opt && rp.loc != -1 {
for i, loc := range aip.move_loc {
if airp.move_dist[loc] < AI_MAX_DEF_DIST {
def_score[i] += airp.move_dist[loc] * AI_MAX_DEF_SCORE / AI_MAX_DEF_DIST
} else {
def_score[i] += AI_MAX_DEF_SCORE
}
}
nrp ++
}
}
for i, loc := range aip.move_loc {
if aip.goal_dist[loc] > AI_MAX_MOVE_DIST {
loc_score[i] = 0
} else {
loc_score[i] = (AI_MAX_MOVE_DIST - aip.goal_dist[loc]) * AI_MAX_MOVE_SCORE / AI_MAX_MOVE_DIST
}
}
for i, loc := range aip.move_loc {
def_score[i] /= nrp
for j := 0; j < 2; j ++ {
loc_score[i] += gmap[loc].buf_value[p.opt][j] * AI_MAX_BUF_SCORE / AI_MAX_BUF_VALUE
}
att_score[i] = 0
}
for i, objs := range aip.tech_loc {
tech := gtech[p.tech[i]]
switch {
case tech.class == TC_PEOPLE:
for _, ip := range objs {
p_obj := people[ip]
dhp_c := p.abi - p_obj.def + tech.value
if dhp_c < 1 {
dhp_c = 1
}
dhp_aoe := dhp_c * tech.aoe_ratio / 100
if dhp_aoe < 1 {
dhp_aoe = 1
}
aoe_range := GetAoeRange (p_obj.loc, tech.aoe_range)
score := 0
for _, loc := range aoe_range {
var dhp int
if tech.dx[gmap[loc].dx] && gmap[loc].people >= 0 {
ip_aoe := gmap[loc].people
p_aoe := &people[ip_aoe]
if !tech.aoe_self && p_aoe.opt == p.opt {
continue
}
if tech.is_long && gmap[loc].disable_long[p_aoe.opt] {
continue
}
if loc == p_obj.loc {
dhp = dhp_c
} else {
dhp = dhp_aoe
}
if dhp < 1 {
dhp = 1
}
if dhp > p_aoe.hp {
dhp = p_aoe.hp
}
if p_aoe.opt != p.opt {
score += dhp * AI_MAX_TECH_SCORE / p_aoe.hp
} else {
score -= dhp * AI_MAX_TECH_SCORE / p_aoe.hp
}
}
}
if score < 0 { score = 0 }
aip.tech_people_score[i][ip] = score
}
case tech.class >= TC_ABI_BUF && tech.class < TC_FLY:
for _, obj_loc := range objs {
aoe_range := GetAoeRange (obj_loc, tech.aoe_range)
iad := tech.class - TC_ABI_BUF
buf_c := p.abi * tech.value / 100
vmd := 0
for _, loc := range aoe_range {
var buf int
if !tech.dx[gmap[loc].dx] {
continue
}
dur := tech.duration - gmap[loc].buf_dur[p.opt][iad]
if dur <= 0 {
continue
}
inv_gd := AI_MAX_TECH_DIST - aip.goal_dist[loc]
if inv_gd <= 0 {
continue
}
if loc == obj_loc {
buf = buf_c
} else {
buf = buf_c * tech.aoe_ratio / 100
}
vmd += buf * dur * inv_gd / AI_MAX_TECH_DIST
}
if vmd > AI_MAX_TECH_BUF_VMD {
vmd = AI_MAX_TECH_BUF_VMD
}
aip.tech_loc_score[i][obj_loc] = vmd * AI_MAX_TECH_SCORE / AI_MAX_TECH_BUF_VMD
}
case tech.class == TC_FLY:
aoe_dist := tech.aoe_range * p.abi * tech.value / (100 * MAX_ABI)
abi_c := p.abi * tech.value / 100
for _, obj_loc := range objs {
aoe_range := GetAoeRange (obj_loc, aoe_dist)
vmd := 0
for _, loc := range aoe_range {
var abi int
if !tech.dx[gmap[loc].dx] {
continue
}
dur := tech.duration - gmap[loc].fly_weight_dur[p.opt]
if dur <= 0 {
continue
}
inv_gd := AI_MAX_TECH_DIST - aip.goal_dist[loc]
if inv_gd <= 0 {
continue
}
if loc == obj_loc {
abi = abi_c
} else {
abi = abi_c * tech.aoe_ratio / 100
}
vmd_local := w_map[loc] - (MAX_FLY_WEIGHT - 1) * (MAX_ABI - abi) / MAX_ABI + 1
if vmd_local <= 0 {
continue
}
vmd += vmd_local * dur * inv_gd / AI_MAX_TECH_DIST
}
if vmd > AI_MAX_TECH_BUF_VMD {
vmd = AI_MAX_TECH_BUF_VMD
}
aip.tech_loc_score[i][obj_loc] = vmd * AI_MAX_TECH_SCORE / AI_MAX_TECH_FLY_VMD
}
case tech.class == TC_DISABLE_LONG:
aoe_dist := tech.aoe_range * p.abi / MAX_ABI
dur := tech.duration * p.abi / MAX_ABI
if dur < 1 {
dur = 1
}
for _, obj_loc := range objs {
aoe_range := GetAoeRange (obj_loc, aoe_dist)
vmd := 0
for _, loc := range aoe_range {
if !tech.dx[gmap[loc].dx] {
continue
}
dur_diff := dur - gmap[loc].disable_long_dur[p.opt]
if dur_diff <= 0 {
continue
}
inv_gd := AI_MAX_TECH_DIST - aip.goal_dist[loc]
if inv_gd <= 0 {
continue
}
vmd += dur_diff * inv_gd / AI_MAX_TECH_DIST
}
if vmd > AI_MAX_TECH_DL_VMD {
vmd = AI_MAX_TECH_DL_VMD
}
aip.tech_loc_score[i][obj_loc] = vmd * AI_MAX_TECH_SCORE / AI_MAX_TECH_DL_VMD
}
}
}
for i, cloc := range aip.move_loc {
x, y := Loc2XY (cloc)
max_score := 0
max_score_tech := -1
max_score_loc := -1
for j, itech := range p.tech {
tech := gtech[itech]
for _, dp := range tech.rel_range {
loc := loc_plus (x, y, dp)
if loc == -1 { continue }
if !tech.dx[gmap[loc].dx] { continue }
if tech.class == TC_PEOPLE {
ip_obj := gmap[loc].people
if ip_obj != -1 && people[ip_obj].opt != p.opt {
if !tech.is_long || !gmap[loc].disable_long[people[ip_obj].opt] {
if max_score_tech == -1 || aip.tech_people_score[j][ip_obj] > max_score {
max_score_loc = loc
max_score_tech = j
max_score = aip.tech_people_score[j][ip_obj]
}
}
}
} else {
if max_score_tech == -1 || aip.tech_loc_score[j][loc] > max_score {
max_score_loc = loc
max_score_tech = j
max_score = aip.tech_loc_score[j][loc]
}
}
}
}
att_score[i] += max_score
att_tech[i] = max_score_tech
att_tech_loc[i] = max_score_loc
}
max_score := 0
i_max_score := -1
for i, loc := range aip.move_loc {
if gmap[loc].people != -1 {
continue
}
score := att_score[i] * aip.fact_att + def_score[i] * aip.fact_def + loc_score[i] * aip.fact_move
if i_max_score == -1 || score > max_score {
max_score = score
i_max_score = i
}
}
if i_max_score == -1 {
aip.opt_move_loc = p.loc
aip.opt_itech = -1
aip.opt_tech_obj = -1
} else {
aip.opt_move_loc = aip.move_loc[i_max_score]
aip.opt_itech = att_tech[i_max_score]
aip.opt_tech_obj = att_tech_loc[i_max_score]
}
}
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Go
1
https://gitee.com/Lee4211/ftbt.git
git@gitee.com:Lee4211/ftbt.git
Lee4211
ftbt
ftbt
master

搜索帮助