1 Star 0 Fork 231

疾风/python-learn

forked from mktime/python-learn 
加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
bloom_1.cpp 6.10 KB
一键复制 编辑 原始数据 按行查看 历史
mr.github 提交于 2015-05-21 13:41 . bloom filter
//关于布隆过滤器在URL去重中的应用
//问题背景
/**
假设你想从网上(新浪新闻)去下载一批网页,做信息检索(搜索引擎)的第一步.
你已经从网上下载下来了一批网页,并且有这批网页的URL,不过你还有一批需要下载的网页的URL,
问题是这样的,如果有些URL已经被下载过了,你就不必要再次下载了,现在让你快速的识别
出哪些URL上的是还没被下载的,可以有一定的误差,但是不能超过1%。.
**/
//本例中URL初始数量为20万条 ,如果有其它规模的数据,可以将具体参数进行相应更改
//测试URL数量为186083条
//请使用标准C++进行编译
//更多hash函数请登录 泪下的天空
//原代码高亮显示
#include <string>
#include <iostream>
#include <assert.h>
#include <fstream>
#include <time.h>
using namespace std;
#define FUNC_NUM 8
#define BIT_MAX 3999949 //这是一个素数,why?
const int HASH_SIZE = BIT_MAX / 8 + 1;
char hash[HASH_SIZE];
int strInt[FUNC_NUM];
//以下标<<[1-8]>>数字的是字符串散列函数,本程序中我使用了8个散列函数
//<<1>>
unsigned int RSHash(const std::string& str)
{
unsigned int b = 378551;
unsigned int a = 63689;
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = hash * a + str[i];
a = a * b;
}
return hash;
}
//<<2>>
unsigned int JSHash(const std::string& str)
{
unsigned int hash = 1315423911;
for(std::size_t i = 0; i < str.length(); i++)
{
hash ^= ((hash << 5) + str[i] + (hash >> 2));
}
return hash;
}
//<<3>>
unsigned int PJWHash(const std::string& str)
{
unsigned int BitsInUnsignedInt = (unsigned int)(sizeof(unsigned int) * 8);
unsigned int ThreeQuarters = (unsigned int)((BitsInUnsignedInt * 3) / 4);
unsigned int OneEighth = (unsigned int)(BitsInUnsignedInt / 8);
unsigned int HighBits = (unsigned int)(0xFFFFFFFF) << (BitsInUnsignedInt - OneEighth);
unsigned int hash = 0;
unsigned int test = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash << OneEighth) + str[i];
if((test = hash & HighBits) != 0)
{
hash = (( hash ^ (test >> ThreeQuarters)) & (~HighBits));
}
}
return hash;
}
//<<4>>
unsigned int APHash(const std::string& str)
{
unsigned int hash = 0xAAAAAAAA;
for(std::size_t i = 0; i < str.length(); i++)
{
hash ^= ((i & 1) == 0) ? ( (hash << 7) ^ str[i] * (hash >> 3)) :
(~((hash << 11) + (str[i] ^ (hash >> 5))));
}
return hash;
}
//<<5>>
unsigned int BKDRHash(const std::string& str)
{
unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = (hash * seed) + str[i];
}
return hash;
}
//<<6>>
unsigned int SDBMHash(const std::string& str)
{
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash = str[i] + (hash << 6) + (hash << 16) - hash;
}
return hash;
}
//<<7>>
unsigned int FNVHash(const std::string& str)
{
const unsigned int fnv_prime = 0x811C9DC5;
unsigned int hash = 0;
for(std::size_t i = 0; i < str.length(); i++)
{
hash *= fnv_prime;
hash ^= str[i];
}
return hash;
}
//<<8>>
unsigned int Hflp(string str){
unsigned int len = str.length();
unsigned int sum = 0;
for(std::size_t i=0;i<len;i++){
sum ^= str[i] << (8*(i%4));
}
return sum & 0x7FFFFFFF;
}
//更多hash函数请登录 http://jinyun2012.blog.sohu.com
//将一个具体的url散列成一组整数
void getIntSet(string url , int * set)
{
set[0] = RSHash(url) % BIT_MAX;
set[1] = JSHash(url) % BIT_MAX;
set[2] = PJWHash(url) % BIT_MAX;
set[3] = APHash(url) % BIT_MAX;
set[4] = BKDRHash(url) % BIT_MAX;
set[5] = SDBMHash(url) % BIT_MAX;
set[6] = FNVHash(url) % BIT_MAX;
set[7] = Hflp(url) % BIT_MAX;
}
//将每个url映射到hash数组中
void shadeHash(string url){
getIntSet(url , strInt);
for(int i=0;i<FUNC_NUM;i++){
int pos = (strInt[i] >> 3);
int mod = strInt[i] & 7;
int val = 1 << (7 - mod);
hash[pos] |= val;
}
}
//查找url是否存在于url.dat文件中
bool find(string url)
{
getIntSet(url , strInt);
bool res = true;
for(int i=0;i<FUNC_NUM && res == true; i++){
int pos = (strInt[i] >> 3);
int mod = strInt[i] & 7;
int val = 1 << (7 - mod);
res &= (bool)(hash[pos] & val);
}
return res;
}
int main(int argc, char* argv[])
{
ifstream url_in("url.dat");
assert(url_in != NULL);
string url;
int len(0);
time_t con_start = time(NULL);
while(getline(url_in , url)){
len += url.length();
shadeHash(url);
}
time_t con_end = time(NULL);
url_in.close();
//读取文件中测试数据
ifstream test_in("test_url.dat");
assert(test_in);
int count(0) , size(0);
time_t test_start = time(NULL);
while(getline(test_in , url)){
size++;
if(find(url))count++;
}
time_t test_end = time(NULL);
cout<<"测试URL数量:"<<size<<endl;
cout<<"错配URL数量:"<<count<<endl;
cout<<"错配概率 : "<<count * 1.0 / size<<endl << endl;
cout<<"关于优势--->"<<endl;
cout<<"原URL所占存储空间: "<<len <<" byte"<<endl;
cout<<"程序需要存储空间 : "<< HASH_SIZE<<" byte"<<endl;
cout<<"空间节约 : "<< 1.0 - HASH_SIZE * 1.0 / len <<endl;
cout<<"构造hash表所用时间 "<<(con_end - con_start)<<"s"<<endl;
cout<<"测试所用时间 "<<(test_end - test_start)<<"s"<<endl;
return 0;
}
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/JFXX/python-learn.git
git@gitee.com:JFXX/python-learn.git
JFXX
python-learn
python-learn
master

搜索帮助