代码拉取完成,页面将自动刷新
#!/usr/bin/python
# -*- coding: utf-8 -*-
# ----------------------------------------------
# --- Author : Ahmet Ozlu
# --- Mail : ahmetozlu93@gmail.com
# --- Date : 27th January 2018
# ----------------------------------------------
# Imports
import argparse
import numpy as np
import os
import sys
import tensorflow as tf
import cv2
import numpy as np
import matplotlib.image as mpimg
from PIL import Image
# Object detection imports
from utils import label_map_util
from utils import visualization_utils as vis_util
# By default I use an "SSD with Mobilenet" model here. See the detection model zoo (https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies.
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 3
FLAGS = None
# Detection
def object_detection_function():
# Download Model
# uncomment if you have not download the model yet
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
# Label maps map indices to category names, so that when our convolution network predicts 5, we know that this corresponds to airplane. Here I use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map,
max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# for all the frames that are extracted from input video
image = mpimg.imread(FLAGS.pic)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores,
detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
image.setflags(write=1)
vis_util.runSingleClassify(
image,
FLAGS.pic,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
)
def parse_args(check=True):
parser = argparse.ArgumentParser()
parser.add_argument(
'--pic',
type=str,
default='/home/yu/Mix/pic/test.jpg'
)
parser.add_argument(
'--model_dir',
type=str,
default='/home/yu/Mix/',
help="""\
Path to classify_image_graph_def.pb,
imagenet_synset_to_human_label_map.txt, and
imagenet_2012_challenge_label_map_proto.pbtxt.\
"""
)
FLAGS, unparsed = parser.parse_known_args()
return FLAGS, unparsed
if __name__ == '__main__':
FLAGS, unparsed = parse_args()
object_detection_function()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。