代码拉取完成,页面将自动刷新
# -*- coding: utf-8 -*-
import numpy
from PIL import Image
import six
import numpy as np
import os,glob
import random
from chainer.dataset import dataset_mixin
from chainercv.transforms import resize,random_flip,random_crop
from chainercv.utils import read_image,write_image
def stack_imgs(fns,crop,resize=False,grey=False):
imgs_in =[]
for fn in fns:
fn1,ext = os.path.splitext(fn)
# image can be given as csv or jpg/png... etc
if ext==".csv":
img_in = np.loadtxt(fn, delimiter=",")[np.newaxis,]
elif ext==".txt":
img_in = np.loadtxt(fn)[np.newaxis,]
elif ext==".npy":
img_in = (np.load(fn)[np.newaxis,]).astype(np.float32)
# img_in = (np.sqrt(np.clip(img_in,0,100)))/10.0 ## nasty preprocess
# img_in = (img_in - np.mean(img_in))/2*np.std(img_in) # standardize
else:
img_in = read_image(fn, color=not grey)/127.5 -1.0
# resize if the image is too small
if resize:
if img_in.shape[1]<crop[0] or img_in.shape[2]<crop[1]:
if crop[0]/img_in.shape[1] < crop[1]/img_in.shape[2]:
img_in = resize(img_in, (int(crop[1]/img_in.shape[2]*img_in.shape[1]), crop[1]))
else:
img_in = resize(img_in, (crop[0], int(crop[0]/img_in.shape[1]*img_in.shape[2])))
imgs_in.append(img_in)
# an input/output image can consist of multiple images; they are stacked as channels
# print(imgs_in.shape)
return(np.concatenate(imgs_in, axis=0))
class Dataset(dataset_mixin.DatasetMixin):
def __init__(self, datalist, DataDir, from_col, to_col, crop=(None,None), imgtype='jpg', random=0, grey=False, BtoA=False, **kwargs):
self.dataset = []
if datalist == '__train__':
for fn in glob.glob(os.path.join(DataDir,"trainA/*.{}".format(imgtype))):
fn2 = fn.replace('trainA','trainB')
if BtoA:
self.dataset.append([[fn2],[fn]])
else:
self.dataset.append([[fn],[fn2]])
elif datalist == '__test__':
for fn in glob.glob(os.path.join(DataDir,"testA/*.{}".format(imgtype))):
fn2 = fn.replace('testA','testB')
if BtoA:
self.dataset.append([[fn2],[fn]])
else:
self.dataset.append([[fn],[fn2]])
else:
## an input/output image can consist of multiple images; they are stacked as channels
with open(datalist) as input:
for line in input:
files = line.strip().split('\t')
if(len(files))<2:
self.dataset.append([
[os.path.join(DataDir,files[0])],
[os.path.join(DataDir,files[0])]
])
if(len(files)<len(set(from_col).union(set(to_col)))):
print("Error in reading data file: ",files)
exit()
if BtoA:
self.dataset.append([
[os.path.join(DataDir,files[i]) for i in to_col],
[os.path.join(DataDir,files[i]) for i in from_col]
])
else:
self.dataset.append([
[os.path.join(DataDir,files[i]) for i in from_col],
[os.path.join(DataDir,files[i]) for i in to_col]
])
for i in set(from_col).union(set(to_col)):
if not os.path.isfile(os.path.join(DataDir,files[i])):
print("{} not found!".format(os.path.join(DataDir,files[i])))
exit()
self.crop = crop
self.grey = grey
self.random = random
print("Cropped size: ",self.crop)
print("loaded {} images".format(len(self.dataset)))
def __len__(self):
return len(self.dataset)
def get_img_path(self, i):
return(self.dataset[i][0][0])
def var2img(self,var):
return(0.5*(1.0+var)*255)
def get_example(self, i):
il,ol = self.dataset[i]
imgs_in = stack_imgs(il,self.crop, grey=self.grey)
imgs_out = stack_imgs(ol,self.crop, grey=self.grey)
# print(np.min(imgs_in),np.max(imgs_in))
H = self.crop[0] if self.crop[0] else 16*((imgs_in.shape[1]-2*self.random)//16)
W = self.crop[1] if self.crop[1] else 16*((imgs_in.shape[2]-2*self.random)//16)
if self.random: # random crop/flip
if random.choice([True, False]):
imgs_in = imgs_in[:, :, ::-1]
imgs_out = imgs_out[:, :, ::-1]
# if random.choice([True, False]):
# imgs_in = imgs_in[:, ::-1, :]
# imgs_out = imgs_out[:, ::-1, :]
y_offset = random.randint((imgs_in.shape[1]-H)//2-self.random, (imgs_in.shape[1]-H)//2+self.random)
y_slice = slice(y_offset, y_offset + H)
x_offset = random.randint((imgs_in.shape[2]-W)//2-self.random, (imgs_in.shape[2]-W)//2+self.random)
x_slice = slice(x_offset, x_offset + W)
else: # centre crop
y_offset = (imgs_in.shape[1] - H) // 2
x_offset = (imgs_in.shape[2] - W) // 2
y_slice = slice(y_offset, y_offset + H)
x_slice = slice(x_offset, x_offset + W)
return imgs_in[:,y_slice,x_slice], imgs_out[:,y_slice,x_slice]
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。