代码拉取完成,页面将自动刷新
"""通过shp面文件裁剪tif"""
from osgeo import gdal, osr, ogr, gdal_array
import os
import shapefile
import time
from pyproj import Proj, transform
import numpy as np
from tqdm import tqdm
import pandas as pd
def ClipMinimumRectangle(path, outputpath, ignoreValue):
"""裁剪最小外包矩形, 仅限2维矩阵,ignoreValue是列表"""
im_data, im_geotrans, im_proj = readGeoTIFF(path)
for data in ignoreValue:
im_data[im_data == data] = ignoreValue[0]
Colindex = np.where(np.all(im_data == im_data[0, :], axis=0) == False)[0]
Rowindex = np.where(np.all(im_data == im_data[0, :], axis=1) == False)[0]
start_x, end_x = Colindex[0], Colindex[-1]+1
start_y, end_y = Rowindex[0], Rowindex[-1]+1
im_data = im_data[start_y:end_y, start_x:end_x]
im_geotrans = list(im_geotrans)
im_geotrans[0] = im_geotrans[0] + start_x * im_geotrans[1]
im_geotrans[3] = im_geotrans[3] + start_y * im_geotrans[5]
CreateGeoTiff(outputpath, im_data, tuple(im_geotrans), im_proj)
def get_tif_info(tif_path):
if tif_path.endswith('.tif') or tif_path.endswith('.TIF'):
dataset = gdal.Open(tif_path)
pcs = osr.SpatialReference()
pcs.ImportFromWkt(dataset.GetProjection())
gcs = pcs.CloneGeogCS()
extend = dataset.GetGeoTransform()
shape = (dataset.RasterYSize, dataset.RasterXSize)
else:
raise "Unsupported file format"
img = dataset.GetRasterBand(1).ReadAsArray() # (height, width)
return img, dataset, gcs, pcs, extend, shape
def clip_data(path, shp_path, out_path):
# 将数据源作为gdal_array载入
# 同时载入gdal库的图片从而获取geotransform
srcImage = gdal.Open(path)
im_width = srcImage.RasterXSize # 栅格矩阵的列数
im_height = srcImage.RasterYSize # 栅格矩阵的行数
im_data = srcImage.ReadAsArray(0, 0, im_width, im_height) # 获取数据
'''(左上角的坐标, 像素宽度, 旋转系数, 左上角的坐标, 旋转系数, 像素高度,6)'''
geoTrans = srcImage.GetGeoTransform()
r = shapefile.Reader(shp_path)
# 获取矢量文件的外接矩形,此处是投影坐标
minX, minY, maxX, maxY = r.bbox
WGS84 = Proj(init='EPSG:4326')
p = Proj(proj='utm', zone=50, ellps='WGS84', preserve_units=False)
x, y = minX, minY
minX, minY = transform(WGS84, p, x, y)
x, y = maxX, maxY
maxX, maxY = transform(WGS84, p, x, y)
# 获取影像文件的六参数
img_X, img_Y, img_W, img_H = geoTrans[0], geoTrans[3], geoTrans[1], geoTrans[5]
# 计算时候有三种方式,用过像素的像素、用外面相邻像素、用里面相邻的像素
# 计算对应像素的位置,此处用最外面相邻的像素
# 计算X的最大最小值
minX_loc, maxX_loc = int((minX - img_X) / img_W), int((maxX - img_X) / img_W)
# 计算Y的最大最小值
minY_loc, maxY_loc = int((maxY - img_Y) / img_H), int((minY - img_Y) / img_H)
clip = im_data[:, minY_loc:maxY_loc, minX_loc:maxX_loc]
# 为图片创建一个新的geomatrix对象以便附加地理参照数据,
geoTrans = list(geoTrans)
geoTrans[0] = minX
geoTrans[3] = maxY
im_proj = srcImage.GetProjection()
# 创建文件
driver = gdal.GetDriverByName("GTiff") # 数据格式
dataset = driver.Create(out_path, clip.shape[2], clip.shape[1], clip.shape[0],
gdal.GDT_Float32)
dataset.SetGeoTransform(geoTrans) # 写入仿射变换的六个参数
dataset.SetProjection(im_proj) # 写入投影信息
if clip.shape[0] == 1:
dataset.GetRasterBand(1).WriteArray(clip) # 写入数组数据
else:
for i in range(clip.shape[0]):
dataset.GetRasterBand(i + 1).WriteArray(clip[i])
del dataset
if __name__ == '__main__':
root = r'G:\哨兵2号数据\2022.4.12数据集'
ShapefilePath = os.path.join(root, '范围/202103/lx.shp') # 面文件
TiffPath = os.path.join(root, 'suibian_tif/suibian_2021_03.tif') # 待裁剪的tif
out_dir = os.path.join(root, 'Temp/temp.tif') # 中间文件,代码跑完可以删除
img, dataset, gcs, pcs, extend, shape = get_tif_info(TiffPath) # 获取tif文件的投影等信息
Dict = {1: '水', 2: '建筑', 3: '植被', 4: '裸地', 5: '稀疏植被', 6: '云'}
sf = shapefile.Reader(ShapefilePath) # 读取shapefile文件
# #读取元数据
# print(str(sf.shapeType)) # 输出shp类型
# print(sf.encoding)# 输出shp文件编码
# print(sf.bbox) # 输出shp的文件范围(外包矩形)
# print(sf.numRecords) # 输出shp文件的要素数据
# print(sf.records()) # 输出shp文件的属性数据
# print(sf.shapes()) #
for index in tqdm(range(sf.numRecords)):
outshp = os.path.join(root, r'Temp\temp.shp') # 中间文件,代码跑完可以删除
index_record = sf.record(index)[0] # 面要素的属性值
index_shape = sf.shape(index).points # 面要素边界
_shape = [[[x[0], x[1]] for x in index_shape]]
if index_record != 0:
length = len(os.listdir(os.path.join(root, 'output', Dict[index_record]))) # 获取当前类别里面有多少条数据
outputpath = os.path.join(root, 'output', Dict[index_record], "{}.tif".format(length + 1))
"""新建一个面文件并设置投影信息"""
w = shapefile.Writer(outshp, shapeType=5) # 新建数据存放位置,5代表是面文件
w.field('FIRST_FLD')
w.poly(_shape)
w.record('First', 'Point')
w.close()
proj = osr.SpatialReference()
proj.ImportFromProj4(str(gcs))
wkt = proj.ExportToWkt()
f = open(outshp.replace(".shp", ".prj"), 'w')
f.write(wkt)
f.close()
"""
先使用面文件根据最小外包矩形切割tif,保存到temp.tif,这一步的目的是由于gdal.Wrap切割无法切最小外包矩形
"""
clip_data(TiffPath, outshp, out_dir)
time.sleep(1)
"""读shp文件"""
sf_temp = shapefile.Reader(outshp)
ds = gdal.Warp(outputpath,
out_dir,
format='GTiff',
cutlineDSName=outshp,
cutlineWhere="FIELD = 'whatever'", # clip specific feature
dstNodata=0) # set nodata value
ds = None # close dataset
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。