代码拉取完成,页面将自动刷新
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
@Author :hhx
@Date :2022/5/13 13:41
@Description :Sauvola局部二值化算法
"""
import math
import numpy as np
import cv2
import sys
from tqdm import tqdm
from matplotlib import pyplot as plt
from utils import *
def integral(img):
'''
计算图像的积分和平方积分
:param img:Mat--- 输入待处理图像
:return:integral_sum, integral_sqrt_sum:Mat--- 积分图和平方积分图
'''
integral_sum = np.zeros((img.shape[0], img.shape[1]), dtype=np.int32)
integral_sqrt_sum = np.zeros((img.shape[0], img.shape[1]), dtype=np.int32)
rows, cols = img.shape
print(img)
for r in range(rows):
sum = 0
sqrt_sum = 0
for c in range(cols):
sum += img[r][c]
sqrt_sum += math.sqrt(img[r][c])
if r == 0:
integral_sum[r][c] = sum
integral_sqrt_sum[r][c] = sqrt_sum
else:
integral_sum[r][c] = sum + integral_sum[r - 1][c]
integral_sqrt_sum[r][c] = sqrt_sum + integral_sqrt_sum[r - 1][c]
return integral_sum, integral_sqrt_sum
def sauvola(img, k=0.1, kernerl=(31, 31)):
'''
sauvola阈值法。
根据当前像素点邻域内的灰度均值与标准方差来动态计算该像素点的阈值
:param img:Mat--- 输入待处理图像
:param k:float---修正参数,一般0<k<1
:param kernerl:set---窗口大小
:return:img:Mat---阈值处理后的图像
'''
print(img.shape)
# img = cv2.merge([img])
# cv2.imshow("img", img)
# cv2.waitKey()
if kernerl[0] % 2 != 1 or kernerl[1] % 2 != 1:
raise ValueError('kernerl元组中的值必须为奇数,'
'请检查kernerl[0] or kernerl[1]是否为奇数!!!')
# 计算积分图和积分平方和图
integral_sum, integral_sqrt_sum = integral(img)
# 创建图像
rows, cols = img.shape
diff = np.zeros((rows, cols), np.float32)
sqrt_diff = np.zeros((rows, cols), np.float32)
mean = np.zeros((rows, cols), np.float32)
threshold = np.zeros((rows, cols), np.float32)
std = np.zeros((rows, cols), np.float32)
whalf = kernerl[0] >> 1 # 计算邻域类半径的一半
for row in tqdm(range(rows)):
# print('第{}行处理中...'.format(row))
for col in range(cols):
xmin = max(0, row - whalf)
ymin = max(0, col - whalf)
xmax = min(rows - 1, row + whalf)
ymax = min(cols - 1, col + whalf)
area = (xmax - xmin + 1) * (ymax - ymin + 1)
if area <= 0:
sys.exit(1)
if xmin == 0 and ymin == 0:
diff[row, col] = integral_sum[xmax, ymax]
sqrt_diff[row, col] = integral_sqrt_sum[xmax, ymax]
elif xmin > 0 and ymin == 0:
diff[row, col] = integral_sum[xmax, ymax] - integral_sum[xmin - 1, ymax]
sqrt_diff[row, col] = integral_sqrt_sum[xmax, ymax] - integral_sqrt_sum[xmin - 1, ymax]
elif xmin == 0 and ymin > 0:
diff[row, col] = integral_sum[xmax, ymax] - integral_sum[xmax, ymax - 1]
sqrt_diff[row, col] = integral_sqrt_sum[xmax, ymax] - integral_sqrt_sum[xmax, ymax - 1]
else:
diagsum = integral_sum[xmax, ymax] + integral_sum[xmin - 1, ymin - 1]
idiagsum = integral_sum[xmax, ymin - 1] + integral_sum[xmin - 1, ymax]
diff[row, col] = diagsum - idiagsum
sqdiagsum = integral_sqrt_sum[xmax, ymax] + integral_sqrt_sum[xmin - 1, ymin - 1]
sqidiagsum = integral_sqrt_sum[xmax, ymin - 1] + integral_sqrt_sum[xmin - 1, ymax]
sqrt_diff[row, col] = sqdiagsum - sqidiagsum
mean[row, col] = diff[row, col] / area
std[row, col] = math.sqrt((sqrt_diff[row, col] - math.sqrt(diff[row, col]) / area) / (area - 1))
threshold[row, col] = mean[row, col] * (1 + k * ((std[row, col] / 128) - 1))
if img[row, col] < threshold[row, col]:
img[row, col] = 0
else:
img[row, col] = 255
return img
if __name__ == '__main__':
# img = cv2.imread('ttt.jpg', 0)
# # cv.imshow("img", img)
# img1 = sauvola(img)
# cv2.imshow("img", img1)
# cv2.waitKey()
data1 = np.load('result/index_npy/2021-07_index2.npy')
data = data1
id = np.where(data.astype('str') == 'nan')
data = np.delete(data, id)
data, max, min = normalize(data)
data = (data1-min)/(max-min)
print(data.shape)
data = data * 1000
data[id] = 0
data = data.astype('int')
th = sauvola(data)
print(th)
th = (th / 1000) * (max - min) + min
print(th)
plt.hist(x=data, # 指定绘图数据
bins=100, # 指定直方图中条块的个数
color='steelblue', # 指定直方图的填充色
edgecolor='black' # 指定直方图的边框色
)
plt.show()
fig = plt.figure(figsize=(8, 8))
ax = plt.subplot(121)
cax = ax.matshow(data1, cmap='coolwarm')
fig.colorbar(cax)
ax = plt.subplot(122)
cax = ax.matshow(data1 > th, cmap='coolwarm')
print(cax)
fig.colorbar(cax)
plt.show()
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。