代码拉取完成,页面将自动刷新
同步操作将从 ahqzy/onnx_convert 强制同步,此操作会覆盖自 Fork 仓库以来所做的任何修改,且无法恢复!!!
确定后同步将在后台操作,完成时将刷新页面,请耐心等待。
import onnx
import operation
import values
import numpy as np
import log
logger = log.getLogger(__name__, log.INFO)
def merge_gelu1(model):
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
dict_mul2 = {}
got_gelu = False
search = True
divB_list = []
addB_list = []
while search == True:
search = False
got_match_mul = False
for node_id, node in enumerate(model.graph.node):
#print(node_id, ", name:", node.name, ", input:", node.input, ", output:", node.output, \
# ", op:", node.op_type, ', len(input):', len(node.input))
if node.op_type == 'Div':
divB = values.get_init_value(model, node.input[1])
logger.debug('divB: {}'.format(divB))
if isinstance(divB, list) and divB == []:
logger.debug('divB is not in initilizer')
#continue
divB = values.get_constant_value(model, node.input[1])
if divB == []:
logger.debug('divB is not in constant node list')
got_match_mul = False
continue
else:
logger.debug('divB is {} {}'.format(divB, type(divB)))
if abs(divB[0] - 1.414) > 0.01:
logger.debug('this is not the div-node which we wanted(value B is not 1.414)...')
got_match_mul = False
continue
if isinstance(divB, np.ndarray) == True:
if divB.shape != (1, ):
logger.debug('this is not the div-node which we wanted(shape is wrong)...')
got_match_mul = False
continue
else:
if len(divB) != 1:
logger.debug('this is not the div-node which we wanted(list len is wrong)...')
got_match_mul = False
continue
dict_div['input'] = node.input
dict_div['output'] = node.output
dict_div['id'] = node_id
logger.debug('got match div node: {}'.format(node.name))
if node.op_type == 'Erf':
if dict_div and node.input[0] == dict_div['output'][0]:
dict_erf['input'] = node.input
dict_erf['output'] = node.output
dict_erf['id'] = node_id
logger.debug('got first pair: {} {}'.format(dict_erf['input'], dict_erf['output']))
else:
logger.debug('clear dict_div: {}'.format(dict_div))
got_match_mul = False
dict_div = {}
if node.op_type == 'Add':
if dict_erf and node.input[0] == dict_erf['output'][0]:
addB = values.get_init_value(model, node.input[1])
if isinstance(addB, list) and addB == []:
logger.debug('addB is not in initilizer')
addB = values.get_constant_value(model, node.input[1])
if addB == []:
dict_div = {}
dict_erf = {}
got_match_mul = False
logger.debug('addB is not in constant node list~')
continue
logger.debug('addB: {}'.format(addB))
if abs(addB[0] - 1) > 0.01:
logger.debug('this is not the add-node which we wanted(value B is not 1)...')
got_match_mul = False
dict_div = {}
dict_erf = {}
continue
if isinstance(addB, np.ndarray) == True:
if addB.shape != (1, ):
logger.debug('this is not the add-node which we wanted(shape is wrong)...')
dict_div = {}
dict_erf = {}
got_match_mul = False
continue
else:
if len(addB) != 1:
logger.debug('this is not the add-node which we wanted(list len is wrong)...')
dict_div = {}
dict_erf = {}
got_match_mul = False
continue
dict_add['input'] = node.input
dict_add['output'] = node.output
dict_add['id'] = node_id
dict_add['node'] = node
else:
logger.debug('clear dict_add and dict_erf, ')
logger.debug('dict_add: {}'.format(dict_add))
logger.debug('dict_erf: {}'.format(dict_erf))
got_match_mul = False
dict_div = {}
dict_erf = {}
if node.op_type == 'Mul':
if got_match_mul == False and dict_div and node.input[0] == dict_div['input'][0] and \
node.input[1] == dict_add['output'][0]:
dict_mul['input'] = node.input
dict_mul['output'] = node.output
dict_mul['id'] = node_id
got_match_mul = True
logger.debug('got second pair: {} {}'.format(dict_mul['input'], dict_mul['output']))
elif got_match_mul == True:
if node.input[0] == dict_mul['output'][0]:
mulB = values.get_init_value(model, node.input[1])
if isinstance(mulB, list) and mulB == []:
logger.debug('mulB is not in initilizer')
mulB = values.get_constant_value(model, node.input[1])
if mulB == []:
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
got_match_mul = False
logger.debug('mulB is not in constant node list~')
continue
logger.debug('mulB: {}'.format(mulB))
if abs(mulB[0] - 0.5) > 0.01:
logger.debug('this is not the mul-node which we wanted(value B is not 1)...')
got_match_mul = False
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
continue
if isinstance(mulB, np.ndarray) == True:
if mulB.shape != (1, ):
logger.debug('this is not the mul-node which we wanted(shape is wrong)...')
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
got_match_mul = False
continue
else:
if len(mulB) != 1:
logger.debug('this is not the mul-node which we wanted(list len is wrong)...')
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
got_match_mul = False
continue
dict_mul2['input'] = node.input
dict_mul2['output'] = node.output
dict_mul2['id'] = node_id
operation.remove_initializer_if_necessary_by_name(model, node.input[1], node)
###################################
old_node = model.graph.node[dict_div['id']]
if old_node.input[1] not in divB_list:
divB_list.append(old_node.input[1])
model.graph.node.remove(old_node)
gelu_node = onnx.helper.make_node(
name = '',
op_type='Gelu',
inputs=[dict_div['input'][0]],
outputs=dict_mul2['output'],
domain='com.microsoft'
)
model.graph.node.insert(dict_div['id'], gelu_node)
operation.remove_node(model, dict_erf['input'], dict_erf['output'])
add_node = dict_add['node']
if add_node.input[1] not in addB_list:
addB_list.append(add_node.input[1])
operation.remove_node(model, dict_add['input'], dict_add['output'])
operation.remove_node(model, dict_mul['input'], dict_mul['output'])
operation.remove_node(model, dict_mul2['input'], dict_mul2['output'])
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
dict_mul2 = {}
got_match_mul = False
###############################
got_gelu = True
search = True
break
else:
logger.debug('----clear dict_div, dict_erf, dict_mul')
dict_div = {}
dict_erf = {}
dict_add = {}
got_match_mul = False
else:
logger.debug('+++clear dict_div, dict_erf, dict_mul')
dict_div = {}
dict_erf = {}
dict_add = {}
dict_mul = {}
got_match_mul = False
if got_gelu == True:
op_set = model.opset_import.add()
op_set.domain = 'com.microsoft'
op_set.version = 1
for divB in divB_list:
operation.remove_initializer_by_name(model, divB)
for addB in addB_list:
operation.remove_initializer_by_name(model, addB)
return model
class MergeGelu():
def __init__(self, model):
logger.debug('MergeGelu Init--------------------------')
self.model = model
self.got_gelu = False
self.search = True
self.loop = 0
self.dict_pow = {}
self.dict_mul1 = {}
self.dict_add1 = {}
self.dict_mul2 = {}
self.dict_tanh = {}
self.dict_add2 = {}
self.dict_mul3 = {}
self.dict_mul4 = {}
self.got_mul1 = False
self.got_mul2 = False
self.got_mul3 = False
self.got_mul4 = False
self.got_add1 = False
self.got_add2 = False
def clear(self):
self.dict_pow = {}
self.dict_mul1 = {}
self.dict_add1 = {}
self.dict_mul2 = {}
self.dict_tanh = {}
self.dict_add2 = {}
self.dict_mul3 = {}
self.dict_mul4 = {}
self.got_mul1 = False
self.got_mul2 = False
self.got_mul3 = False
self.got_mul4 = False
self.got_add1 = False
self.got_add2 = False
self.search = False
def merge(self):
while self.search == True:
self.clear()
self.loop = self.loop + 1
for node_id, node in enumerate(self.model.graph.node):
self.loop = self.loop + 1
#print(node_id, ", name:", node.name, ", input:", node.input, ", output:", node.output, \
# ", op:", node.op_type, ', len(input):', len(node.input))
if node.op_type == 'Pow':
powB = values.get_init_value(self.model, node.input[1])
if isinstance(powB, list) and powB == []:
logger.debug('powB is not in initilizer')
powB = values.get_constant_value(self.model, node.input[1])
if powB == []:
logger.debug('powB is not in constant node list')
self.clear()
continue
else:
logger.debug('powB is {} {}'.format(powB, type(powB)))
if abs(powB[0] - 3.0) > 0.01:
logger.debug('this is not the pow-node which we wanted(value B is not 3.0) {}'.format(powB[0]))
self.clear()
continue
self.dict_pow['input'] = node.input
self.dict_pow['output'] = node.output
self.dict_pow['id'] = node_id
logger.debug('got pow node: {}'.format(node.name))
if node.op_type == 'Mul':
if self.got_mul1 == False:
if self.dict_pow and node.input[1] == self.dict_pow['output'][0]:
mulA = values.get_init_value(self.model, node.input[0])
logger.debug('mulA: {}'.format(mulA))
if isinstance(mulA, list) and mulA == []:
logger.debug('mulA is not in initilizer')
mulA = values.get_constant_value(self.model, node.input[1])
if mulA == []:
logger.debug('mulA is not in constant node list')
self.clear()
continue
else:
logger.debug('mulA is {} {}'.format(mulA, type(mulA)))
if abs(mulA[0] - 0.0447) > 0.01:
logger.debug('this is not the mul-node which we wanted(value B is not 0.0447)...')
self.clear()
continue
self.dict_mul1['input'] = node.input
self.dict_mul1['output'] = node.output
self.dict_mul1['id'] = node_id
logger.debug('got mul1 node: {}'.format(node.name))
self.got_mul1 = True
else:
logger.debug('---self.clear 1')
self.clear()
else:
if self.got_mul2 == False:
if self.dict_add1 and node.input[1] == self.dict_add1['output'][0]:
mulA = values.get_init_value(self.model, node.input[0])
logger.debug('mulA: {}'.format(mulA))
if isinstance(mulA, list) and mulA == []:
logger.debug('mulA is not in initilizer')
mulA = values.get_constant_value(self.model, node.input[1])
if mulA == []:
logger.debug('mulA is not in constant node list')
self.clear()
continue
else:
logger.debug('mulA is {} {}'.format(mulA, type(mulA)))
if abs(mulA[0] - 0.79788) > 0.01:
logger.debug('this is not the mul-node which we wanted(value B is not 0.79788)...')
self.clear()
continue
self.dict_mul2['input'] = node.input
self.dict_mul2['output'] = node.output
self.dict_mul2['id'] = node_id
self.got_mul2 = True
logger.debug('got mul2 node: {}'.format(node.name))
else:
logger.debug('self.clear 2')
self.clear()
else:
if self.got_mul3 == False:
if self.dict_add2 and node.input[1] == self.dict_add2['output'][0]:
mulA = values.get_init_value(self.model, node.input[0])
logger.debug('mulA: {}'.format(mulA))
if isinstance(mulA, list) and mulA == []:
logger.debug('mulA is not in initilizer')
mulA = values.get_constant_value(self.model, node.input[1])
if mulA == []:
logger.debug('mulA is not in constant node list')
self.clear()
continue
else:
logger.debug('mulA is {} {}'.format(mulA, type(mulA)))
if abs(mulA[0] - 0.5) > 0.01:
logger.debug('this is not the mul-node which we wanted(value B is not 0.5)...')
self.clear()
continue
self.dict_mul3['input'] = node.input
self.dict_mul3['output'] = node.output
self.dict_mul3['id'] = node_id
self.got_mul3 = True
logger.debug('got mul3 node: {}'.format(node.name))
else:
logger.debug('self.clear 3')
self.clear()
elif self.got_mul4 == False:
if self.dict_pow and self.dict_mul3 and node.input[0] == self.dict_pow['input'][0] and \
node.input[1] == self.dict_mul3['output'][0]:
logger.debug('got gelu node, begin fusing...')
self.dict_mul4['input'] = node.input
self.dict_mul4['output'] = node.output
self.dict_mul4['id'] = node_id
self.got_mul4 = True
self.search = True
self.got_gelu = True
pow_node = self.model.graph.node[self.dict_pow['id']]
self.model.graph.node.remove(pow_node)
gelu_node = onnx.helper.make_node(
name = node.name + '_to_gelu_' + str(self.loop),
op_type='Gelu',
inputs=[self.dict_pow['input'][0]],
outputs=self.dict_mul4['output'],
domain='com.microsoft'
)
self.model.graph.node.insert(self.dict_pow['id'], gelu_node)
operation.remove_node(self.model, self.dict_mul1['input'], self.dict_mul1['output'])
operation.remove_node(self.model, self.dict_add1['input'], self.dict_add1['output'])
operation.remove_node(self.model, self.dict_mul2['input'], self.dict_mul2['output'])
operation.remove_node(self.model, self.dict_tanh['input'], self.dict_tanh['output'])
operation.remove_node(self.model, self.dict_add2['input'], self.dict_add2['output'])
operation.remove_node(self.model, self.dict_mul3['input'], self.dict_mul3['output'])
operation.remove_node(self.model, self.dict_mul4['input'], self.dict_mul4['output'])
break
if node.op_type == 'Add':
if self.got_add1 == False:
if self.dict_pow and self.dict_mul1 and node.input[0] == self.dict_pow['input'][0] and \
node.input[1] == self.dict_mul1['output'][0]:
self.dict_add1['input'] = node.input
self.dict_add1['output'] = node.output
self.dict_add1['id'] = node_id
self.got_add1 = True
logger.debug('got add1 node: {}'.format(node.name))
else:
logger.debug('self.clear 4')
self.clear()
else:
if self.got_add2 == False:
if self.dict_tanh and node.input[1] == self.dict_tanh['output'][0]:
addA = values.get_init_value(self.model, node.input[0])
if isinstance(addA, list) and addA == []:
logger.debug('addA is not in initilizer')
addA = values.get_constant_value(self.model, node.input[1])
if addA == []:
logger.debug('addA is not in constant node list')
self.clear()
continue
else:
logger.debug('addA is {} {}'.format(addA, type(addA)))
if abs(addA[0] - 1.0) > 0.01:
logger.debug('this is not the mul-node which we wanted(value B is not 1.0)...')
self.clear()
continue
self.dict_add2['input'] = node.input
self.dict_add2['output'] = node.output
self.dict_add2['id'] = node_id
self.got_add2 = True
logger.debug('got add2 node: {}'.format(node.name))
else:
logger.debug('self.clear 5')
self.clear()
else:
logger.debug('got add1 and add2 already----')
if node.op_type == 'Tanh':
if self.got_add1 == True and self.got_mul1 == True and self.got_mul2 == True:
if self.dict_mul2 and node.input[0] == self.dict_mul2['output'][0]:
self.dict_tanh['input'] = node.input
self.dict_tanh['output'] = node.output
self.dict_tanh['id'] = node_id
logger.debug('got tanh node: {}'.format(node.name))
else:
logger.debug('self.clear 6')
self.clear()
else:
logger.debug('self.clear 7')
self.clear()
if self.got_gelu == True:
op_set = self.model.opset_import.add()
op_set.domain = 'com.microsoft'
op_set.version = 1
return self.model
def merge_gelu(model):
model = merge_gelu1(model)
mg = MergeGelu(model)
model = mg.merge()
return model
'''
if __name__ == "__main__":
model = onnx.load('/home/zqiu/models/gelu3.onnx')
merge_gelu(model)
onnx.save(model, './gelu3_fuse.onnx')
'''
此处可能存在不合适展示的内容,页面不予展示。您可通过相关编辑功能自查并修改。
如您确认内容无涉及 不当用语 / 纯广告导流 / 暴力 / 低俗色情 / 侵权 / 盗版 / 虚假 / 无价值内容或违法国家有关法律法规的内容,可点击提交进行申诉,我们将尽快为您处理。