1 Star 0 Fork 154

/fatigue_detecting

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
文件
克隆/下载
node_detecting.py 7.27 KB
一键复制 编辑 原始数据 按行查看 历史
cungudafa 提交于 2019-12-25 23:21 . wxpythonUI界面
# 参考https://github.com/lincolnhard/head-pose-estimation
import cv2
import dlib
import numpy as np
from imutils import face_utils
"""
思路:
第一步:2D人脸关键点检测;第二步:3D人脸模型匹配;
第三步:求解3D点和对应2D点的转换关系;第四步:根据旋转矩阵求解欧拉角。
"""
# 加载人脸检测和姿势估计模型(dlib)
face_landmark_path = './model/shape_predictor_68_face_landmarks.dat'
"""
只要知道世界坐标系内点的位置、像素坐标位置和相机参数就可以搞定旋转和平移矩阵(OpenCV自带函数solvePnp())
"""
# 世界坐标系(UVW):填写3D参考点,该模型参考http://aifi.isr.uc.pt/Downloads/OpenGL/glAnthropometric3DModel.cpp
object_pts = np.float32([[6.825897, 6.760612, 4.402142], #33左眉左上角
[1.330353, 7.122144, 6.903745], #29左眉右角
[-1.330353, 7.122144, 6.903745], #34右眉左角
[-6.825897, 6.760612, 4.402142], #38右眉右上角
[5.311432, 5.485328, 3.987654], #13左眼左上角
[1.789930, 5.393625, 4.413414], #17左眼右上角
[-1.789930, 5.393625, 4.413414], #25右眼左上角
[-5.311432, 5.485328, 3.987654], #21右眼右上角
[2.005628, 1.409845, 6.165652], #55鼻子左上角
[-2.005628, 1.409845, 6.165652], #49鼻子右上角
[2.774015, -2.080775, 5.048531], #43嘴左上角
[-2.774015, -2.080775, 5.048531],#39嘴右上角
[0.000000, -3.116408, 6.097667], #45嘴中央下角
[0.000000, -7.415691, 4.070434]])#6下巴角
# 相机坐标系(XYZ):添加相机内参
K = [6.5308391993466671e+002, 0.0, 3.1950000000000000e+002,
0.0, 6.5308391993466671e+002, 2.3950000000000000e+002,
0.0, 0.0, 1.0]# 等价于矩阵[fx, 0, cx; 0, fy, cy; 0, 0, 1]
# 图像中心坐标系(uv):相机畸变参数[k1, k2, p1, p2, k3]
D = [7.0834633684407095e-002, 6.9140193737175351e-002, 0.0, 0.0, -1.3073460323689292e+000]
# 像素坐标系(xy):填写凸轮的本征和畸变系数
cam_matrix = np.array(K).reshape(3, 3).astype(np.float32)
dist_coeffs = np.array(D).reshape(5, 1).astype(np.float32)
# 重新投影3D点的世界坐标轴以验证结果姿势
reprojectsrc = np.float32([[10.0, 10.0, 10.0],
[10.0, 10.0, -10.0],
[10.0, -10.0, -10.0],
[10.0, -10.0, 10.0],
[-10.0, 10.0, 10.0],
[-10.0, 10.0, -10.0],
[-10.0, -10.0, -10.0],
[-10.0, -10.0, 10.0]])
# 绘制正方体12轴
line_pairs = [[0, 1], [1, 2], [2, 3], [3, 0],
[4, 5], [5, 6], [6, 7], [7, 4],
[0, 4], [1, 5], [2, 6], [3, 7]]
def get_head_pose(shape):
# 填写2D参考点,注释遵循https://ibug.doc.ic.ac.uk/resources/300-W/
"""
17左眉左上角/21左眉右角/22右眉左上角/26右眉右上角/36左眼左上角/39左眼右上角/42右眼左上角/
45右眼右上角/31鼻子左上角/35鼻子右上角/48左上角/54嘴右上角/57嘴中央下角/8下巴角
"""
# 像素坐标集合
image_pts = np.float32([shape[17], shape[21], shape[22], shape[26], shape[36],
shape[39], shape[42], shape[45], shape[31], shape[35],
shape[48], shape[54], shape[57], shape[8]])
"""
用solvepnp或sovlepnpRansac,输入3d点、2d点、相机内参、相机畸变,输出r、t之后
用projectPoints,输入3d点、相机内参、相机畸变、r、t,输出重投影2d点
计算原2d点和重投影2d点的距离作为重投影误差
"""
# solvePnP计算姿势——求解旋转和平移矩阵:
# rotation_vec表示旋转矩阵,translation_vec表示平移矩阵,cam_matrix与K矩阵对应,dist_coeffs与D矩阵对应。
_, rotation_vec, translation_vec = cv2.solvePnP(object_pts, image_pts, cam_matrix, dist_coeffs)
# projectPoints重新投影误差
reprojectdst, _ = cv2.projectPoints(reprojectsrc, rotation_vec, translation_vec, cam_matrix,dist_coeffs)
reprojectdst = tuple(map(tuple, reprojectdst.reshape(8, 2)))# 以8行2列显示
# 计算欧拉角calc euler angle
# 参考https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html#decomposeprojectionmatrix
rotation_mat, _ = cv2.Rodrigues(rotation_vec)#罗德里格斯公式(将旋转矩阵转换为旋转向量)
pose_mat = cv2.hconcat((rotation_mat, translation_vec))# 水平拼接,vconcat垂直拼接
# eulerAngles –可选的三元素矢量,包含三个以度为单位的欧拉旋转角度
_, _, _, _, _, _, euler_angle = cv2.decomposeProjectionMatrix(pose_mat)# 将投影矩阵分解为旋转矩阵和相机矩阵
return reprojectdst, euler_angle
def main():
# return
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Unable to connect to camera.")
return
# 检测人脸
detector = dlib.get_frontal_face_detector()
# 检测第一个人脸的关键点
predictor = dlib.shape_predictor(face_landmark_path)
while cap.isOpened():
ret, frame = cap.read()
if ret:
face_rects = detector(frame, 0)
if len(face_rects) > 0:
# 循环脸部位置信息,使用predictor(gray, rect)获得脸部特征位置的信息
shape = predictor(frame, face_rects[0])
# 将脸部特征信息转换为数组array的格式
shape = face_utils.shape_to_np(shape)
# 获取头部姿态
reprojectdst, euler_angle = get_head_pose(shape)
pitch = format(euler_angle[0, 0])
yaw = format(euler_angle[1, 0])
roll = format(euler_angle[2, 0])
print('pitch:{}, yaw:{}, roll:{}'.format(pitch, yaw, roll))
# 标出68个特征点
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (0, 0, 255), -1)
# 绘制正方体12轴
for start, end in line_pairs:
cv2.line(frame, reprojectdst[start], reprojectdst[end], (0, 0, 255))
# 显示角度结果
cv2.putText(frame, "X: " + "{:7.2f}".format(euler_angle[0, 0]), (20, 20), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
cv2.putText(frame, "Y: " + "{:7.2f}".format(euler_angle[1, 0]), (20, 50), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
cv2.putText(frame, "Z: " + "{:7.2f}".format(euler_angle[2, 0]), (20, 80), cv2.FONT_HERSHEY_SIMPLEX,0.75, (0, 0, 255), thickness=2)
# 按q退出提示
cv2.putText(frame, "Press 'q': Quit", (20, 450),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (84, 255, 159), 2)
# 窗口显示 show with opencv
cv2.imshow("Head_Posture", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头 release camera
cap.release()
# do a bit of cleanup
cv2.destroyAllWindows()
if __name__ == '__main__':
main()
Loading...
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
Python
1
https://gitee.com/EMK_Mark/fatigue_detecting.git
git@gitee.com:EMK_Mark/fatigue_detecting.git
EMK_Mark
fatigue_detecting
fatigue_detecting
master

搜索帮助