1 Star 0 Fork 76

秦铭涓/Causal_Inference_book

加入 Gitee
与超过 1200万 开发者一起发现、参与优秀开源项目,私有仓库也完全免费 :)
免费加入
该仓库未声明开源许可证文件(LICENSE),使用请关注具体项目描述及其代码上游依赖。
克隆/下载
chapter14.do 4.50 KB
一键复制 编辑 原始数据 按行查看 历史
/***************************************************************
Stata code for Causal Inference: What If by Miguel Hernan & Jamie Robins
Date: 10/10/2019
Author: Eleanor Murray
For errors contact: ejmurray@bu.edu
***************************************************************/
/*********************
*Data preprocessing***
**********************/
clear
use "nhefs.dta"
gen byte cens = (wt82 == .)
/***************************************************************
# PROGRAM 14.1
# Ranks of extreme observations
# Data from NHEFS
#Section 14.4
**************************************************************/
/*For Stata 15 or later, first install the extremes function using this code:
ssc install extremes
*/
/*Ranking of extreme observations*/
extremes wt82_71 seqn
/*Estimate unstabilized censoring weights for use in g-estimation models*/
glm cens qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71, family(binomial)
predict pr_cens
gen w_cens = 1/(1-pr_cens)
replace w_cens = . if cens == 1 /*observations with cens = 1 contribute to censoring models but not outcome model*/
summarize w_cens
/*Analyses restricted to N=1566*/
drop if wt82 == .
summarize wt82_71
/***************************************************************
# PROGRAM 14.2
# G-estimation of a 1-parameter structural nested mean model
# Brute force search
Section 14.5
# Data from NHEFS
***************************************************************/
/*Generate test value of Psi = 3.446*/
gen psi = 3.446
/*Generate H(Psi) for each individual using test value of Psi and their own values of weight change and smoking status*/
gen Hpsi = wt82_71 - psi * qsmk
/*Fit a model for smoking status, given confounders and H(Psi) value, with censoring weights and display H(Psi) coefficient*/
logit qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 Hpsi [pw = w_cens], cluster(seqn)
di _b[Hpsi]
/*G-estimation*/
/*Checking multiple possible values of psi*/
drop psi Hpsi
local seq_start = 2
local seq_end = 5
local seq_by = 0.1
local seq_len = (`seq_end'-`seq_start')/`seq_by' + 1
matrix results = J(`seq_len',4,0)
matrix list results
gen psi = .
gen Hpsi = .
local j = 0
forvalues i = `seq_start'(`seq_by')`seq_end' {
local j = `j'+1
replace psi = `i'
replace Hpsi = wt82_71 - psi * qsmk
quietly logit qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 Hpsi [pw = w_cens], cluster(seqn)
matrix p_mat = r(table)["pvalue","qsmk:Hpsi"]
local p = p_mat[1,1]
local b = _b[Hpsi]
di "coeff `b' is generated from psi `i'"
matrix results[`j',1]= `i'
matrix results[`j',2]= `b'
matrix results[`j',3]= abs(`b')
matrix results[`j',4]= `p'
}
matrix colnames results = "psi" "B(Hpsi)" "AbsB(Hpsi)" "pvalue"
mat li results
mata
res = st_matrix("results")
for(i=1; i<= rows(res); i++) {
if (res[i,3] == colmin(res[,3])) res[i,1]
}
end
* Setting seq_by = 0.01 will yield the result 3.46
/***************************************************************
# PROGRAM 14.3
# G-estimation for 2-parameter structural nested mean model
# Closed form estimator
# Data from NHEFS
Section 14.6
***************************************************************/
/*create weights*/
logit qsmk sex race c.age##c.age ib(last).education c.smokeintensity##c.smokeintensity c.smokeyrs##c.smokeyrs ib(last).exercise ib(last).active c.wt71##c.wt71 [pw = w_cens], cluster(seqn)
predict pr_qsmk
summarize pr_qsmk
/* Closed form estimator linear mean models **/
ssc inst tomata
putmata *, replace
mata: diff = qsmk - pr_qsmk
mata: part1 = w_cens :* wt82_71 :* diff
mata: part2 = w_cens :* qsmk :* diff
mata: psi = sum(part1)/sum(part2)
/*** Closed form estimator for 2-parameter model **/
mata
diff = qsmk - pr_qsmk
diff2 = w_cens :* diff
lhs = J(2,2, 0)
lhs[1,1] = sum( qsmk :* diff2)
lhs[1,2] = sum( qsmk :* smokeintensity :* diff2 )
lhs[2,1] = sum( qsmk :* smokeintensity :* diff2)
lhs[2,2] = sum( qsmk :* smokeintensity :* smokeintensity :* diff2 )
rhs = J(2,1,0)
rhs[1] = sum(wt82_71 :* diff2 )
rhs[2] = sum(wt82_71 :* smokeintensity :* diff2 )
psi = (lusolve(lhs, rhs))'
psi
psi = (invsym(lhs'lhs)*lhs'rhs)'
psi
end
马建仓 AI 助手
尝试更多
代码解读
代码找茬
代码优化
其他
1
https://gitee.com/Belinda8093/Robins.git
git@gitee.com:Belinda8093/Robins.git
Belinda8093
Robins
Causal_Inference_book
master

搜索帮助